New laser-based light sources are highly desired for projection displays because of the need for longer lifetime, lower etendue, and higher color gamut. High power, frequency doubled red, green and blue (RGB) surface emitting diode laser arrays have been developed for use in low cost projection microdisplay television, digital cinema and pocket projectors. Single green lasers for pico-projectors using MEMS scanners have also been demonstrated.
Laser-based projection displays have long attracted interest because of the multiple advantages (expanded color gamut, high resolution, longer lifetime, etc.) expected from lasers as compared to lamps. However, most of these advantages have been largely negated by the significant cost, size, and cooling requirements associated with lasers, and their inability to produce red, green, and blue colors in the same platform. In this paper, we review a new, laser array
technology based of frequency-doubled, semiconductor, surface-emitting lasers. The key features of this technology, such as demonstrated multi-Watt output for rear-projection TVs, power levels scalable with the number of emitters, speckle suppression due to multi-emitter array, and a low-cost and compact design are discussed in detail.
Compact and efficient blue-green lasers have been receiving increasing interest in the last few years due to their applications in various industries: bio-instrumentation, reprographics, microscopy, etc. We report on the latest developments in frequency-doubled, compact blue-green lasers, based on Novalux extended-cavity surface emitting laser (NECSEL) technology. This discussion will touch upon using NECSEL technology to go beyond a 5-20 milliwatt cw laser design for instrumentation applications and obtain a compact design that is scalable to higher power levels in an array-based architecture. Such a blue-green laser array platform can address the needs of laser light sources in the projection display consumer electronics markets, particularly in rear-projection televisions.
In this paper, we will present the recent progress of electrically-pumped directly-modulated tunable 1550 nm VCSEL development at Bandwidth9. The device is fabricated from an all epitaxial VCSEL structure grown on an InP substrate, with a monolithically integrated tuning arm for continuous wavelength tuning. We have demonstrated over 1 mW CW output power and over 20 nm tuning range in C-band and error free transmission performance at 2.5 Gbps over 100 km SMF-28 fiber. The reliability test data of the tunable VCSELs shows a projected failure rate of less than 400 FITS.
This paper presents the performance characteristics and reliability data of AlGaInP-based VISIBLE laser diodes emitting at the wavelengths from 630 to 670 nm. The lasers are grown by toxic gas free solid source molecular beam epitaxy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.