In this paper, we propose an obstacle avoidance system that uses a fuzzy logic control algorithm, for mobile robots that use inexpensive IR sensors in order to guide the robot through an unknown environment. The system is programmed in Python, utilizes one fuzzy system for total control and is self-contained. There are many systems made in the past which are mobile robots that used fuzzy logic in order to navigate in an unknown territory. However, those devices either required a wireless connection between the robot and a base station, or said robot used expensive sensors in order to guide itself around, such as ultrasonic sensors, or used multiple fuzzy systems in parallel to achieve the desired behavior from the robot. All of the examples mentioned above were coded in C/C++.
The development of sensors and control and command modules capable of extracting environmental data has made it possible to build an underwater drone for monitoring and collecting water samples from hard-to-reach areas. In this paper we present the project that focuses on the fundamental challenges related to communication, control but also the analysis of water parameters in real time.
For the naval field there are two major problems related to the existence of microorganisms: the deposition of Biofouling and the treatment of ballast water. The first problem is strictly related to corrosion with an important economic impact on maintenance costs. In accordance with new IMO (International Maritime Organization) regulations, different green technologies have been proposed for solving this particular issue, among them being also considered the technology based on plasma discharge produced at low pressure. The proposed study concerns the opportunity of atmospheric plasma treatment for naval steel preparation or conditioning. Five different treatments, with three types of plasma working under different gases, have been used. Their effects were evaluated based on microbiological analysis. These analyses concern the biological contamination of each sample by bacteria control at 2 different moments of time. For this purpose, the Gram-negative bacteria Escherichia coli has been used, because it is one of the most important microbial indicators according to Ballast Water Performance Standard D2 (http://www.imo.org). Three different types of electric discharges were used as non-thermal plasmas for the surface treatment.
Improving corrosion resistance represents a highly interesting topic in the maritime field, having important economic consequences by reducing the maintenance costs or increasing the life expectancy of the final products and by imposing significant environmental impact. In accordance with new IMO (International Maritime Organization) regulations, different new clean technologies have been proposed for solving this particular issue, among them being also considered the technology based on plasma discharges, generally produced at reduced pressure. The proposed study concerns the opportunity of atmospheric plasma treatment for naval steel preparation or conditioning. Five different treatments, with three types of plasma working under different gases, have been used. Their effects were evaluated based on surface modification analysis. These analyses concern the roughness of the samples and the surface hydrophobicity at two different moments of time. There were used three types of reactors producing non-thermal plasma: GlidArc, Gliding Spark and Minitorch.
The biofouling prevention methods is a new research area. This paper presents a study of biofilm evolution (microbiota) on different surfaces, monitoring different parameters. For this research, the tests are achieved on samples as naval steel painted with different antifouling paints, and liquid wood samples introduced into the dynamic marine water system. The main parameters observed during the test are water temperature and flow. The microfouling samples are observed under the epifluorescence microscopy and quantification of biofilm using specific software. Using MATLAB software, we develop the prediction methods for biofouling prevention using the environmental parameter. The test system use the two boxes placed on the different higher, using an acquisition card the sensors data is sent to the computer for analysis.
The use of robots in the maritime industry is becoming more widespread in its different branches. Underwater autonomous vehicles (UUVs) have become an essential tool for various underwater activities. Compared to other autonomous systems, navigation and localization for UUVs are particularly difficult due to the unavailability of the Global Positioning System (GPS), where signals are attenuated under water and the complexity and instability of the environment are big. Alternative methods such as acoustic positioning systems, inertial navigation systems (INS) and geophysical navigation approach are used for navigation. In this paper is presented three methods for underwater navigation and the algorithm used to follow a trajectory. The flowmeter is used in this application to identify the underwater route and the results are compared with the inertial sensors (IMU) test especially the magnetometer results. The two prediction are used using PID and Kalman filter to identify the trajectory.
Biofouling is the most important cause of naval corrosion. In order to reduce the Biofouling development on naval materials as steel or resin, different new methods have been tested. These methods could help to follow the new IMO environment reglementations and they could replace few classic operations before the painting of the small ships. The replacement of these operations means a reduction in maintenance costs. Their action must influence especially the first two steps of the Biofouling development, called Microfouling, that demand about 24 hours. This work presents the comparative results of the Biofouling development on two different classic naval materials, steel and resin, for three treated samples, immersed in sea water. Non-thermal plasma, produced by GlidArc technology, is applied to the first sample, called GD. The plasma treatment was set to 10 minutes. The last two samples, called AE9 and AE10 are covered by hydrophobic layers, prepared from a special organic-inorganic sol synthesized by sol-gel method. Theoretically, because of the hydrophobic properties, the Biofouling formation must be delayed for AE9 and AE10. The Biofouling development on each treated sample was compared with a witness non-treated sample. The microbiological analyses have been done for 24 hours by epifluorescence microscopy, available for one single layer.
The population alarm systems do not represent a new concept. Since hundreds of years ago the man used either smoke signals generated from certain upper locations, visible from long distance, getting through acoustic systems placed on high buildings, until now when mass-media channels extended the possibilities by the television and radio. However, either one of those mentioned above requested the individual to be located at the alarming moment in the area of action of the alarm. Otherwise, the message has no efficiency. This limitation is currently solved by additional communication channels such as the internet and the mobile networks. Messages are now able to be sent to the mobile screen, and the user can reply to messages either by using the short message service (SMS) or by emailing to someone, to a server, to a center. From the general pattern of alarming the population on certain events, the medical applications represent a very important field. Messages are sent from the patient to a central medical center and back to the patient. This paper focuses on the value that virtual tools developed with LabVIEW brings to us.
KEYWORDS: Video, IP cameras, Data communications, Remotely operated vehicles, Cameras, Global Positioning System, Telecommunications, Control systems, Sensors, Water
The different assessments provide information on the best methods to approach an artifact. The presence and extent of potential threats to archaeology must also be determined. In this paper we present an underwater robot, built in the laboratory, able to identify the artifact and to get it to the surface. It is an underwater remotely operated vehicle (ROV) which can be controlled remotely from the shore, a boat or a control station and communication is possible through an Ethernet cable with a maximum length of 100 m. The robot is equipped with an IP camera which sends real time images that can be accessed anywhere from within the network. The camera also has a microSD card to store the video. The methods developed for data communication between the robot and the user is present. A communication protocol between the client and server is developed to control the ROV.
Corrosion in marine environment is a complex dynamic process influenced mainly by physical chemical, microbiological and mechanical parameters. Times for maintenance related to corrosion are greater than 80% of the total repair. Reducing this cost would be a significant saving, and an effective treatment can reduce times related to ships repairing. Biofouling is a main cause of corrosion and its formation contains four steps. To inhibit biofouling it is proposed a treatment based on non-thermal plasma produced by GlidArc, which can be applied before the immersion of small boats in the sea, as well as cleaning treatment of the hull after a period of time. This work presents the microbiological results of treatment of metal surfaces (naval OL36 steel) with GlidArc technology, according to the first, respectively the second phase formation of biofouling. Samples of naval steel were prepared with three specific naval paints and before the treatment have been introduced in seawater. Microbiological results have been compared for two types of treatments based on GlidArc. In the first case the painted samples are submitted to direct action of non-thermal plasma. In the second case the plasma produced by GlidArc technology is used to activate a solution (plasma activated water = PAW) and then the samples are introduced into this water.
Corrosion in marine environment is an actual problem, being a complex dynamic process influenced mainly by physical, chemical, microbiological and mechanical parameters. Around 70% of the maintenance costs of a ship are associated with the corrosion protection. Times for maintenance related to this phenomenon are greater than 80% of the total repair. Reducing this cost would be a significant saving, and an effective treatment can reduce times related to ships repairing. Biofouling is a main cause of corrosion and for its reduction different methods could be applied, especially in the first part of its production. The atmospheric pressure non-thermal plasmas have been gaining an ever increasing interest for different biodecontamination applications and present potential utilisation in the control of biofouling and biodeterioration. They have a high efficiency of the antimicrobial treatment, including capacity to eradicate microbial biofilms. The adhesion microbial biofilm is mainly influenced by presence of bacteria from the liquid environment. That is why this work concerns the study of annihilation of maximum amount of bacteria from sea water, by using GlidArc technology that produces non-thermal plasma. Bacteria suspended in sea water are placed in contact with activated water. This water is activated by using GlidArc working in humid air. Experimental results refer to the number of different activated and inactivated marine organisms and their evolution, present in solution at certain time intervals after mixing different amounts of seawater with plasma activated water.
Considerable resources have been used since the humans got interested to discover the world around. Any discovery and science advance was taken tremendously amount of time, money, sometimes lives. All of these define the cost of a discovery, developing process. Getting back to electronics, this field faced in the last 20-30 years, a big boom in terms of technologies and opportunities. Thousands of equipment were developed and placed on the market. The big difference between various competitors is made at the moment by that we call the time to market. A mobile, for instance, has a time to market of around 6 months and the tendency is to have it smaller than that. That means between the concept and the first model sale, no more than 6 months should be passing. That is why new approaches are needed. The one extensively used now is the simulation. We call the simulation virtual prototyping. The virtual prototyping takes into account more than the components only. It takes into account some other project parameters that would affect the final product. Certified tools can handle such analysis. In our paper we present the case of HyperLynx, a concept developed by Mentor Graphics Company, assisting the hardware designer throughout the designing process, from thermal point of view. A test case board was analyzed at the pre-layout stage and the results presented.
In this paper work is analysed the structure of double collector vertical magnetotransistor realised in the bipolar integrated circuits technology. Based on the model of dual Hall devices, are established the main characteristics of device operating as magnetic sensors.
By using the numerical simulation it is emphasized the way in which the adequate choise of its geometry and material features, allow the obtaining of high performance devices.
Quality sleep enables your body and mind to be efficient during the day. The good rest of subject on bed depends by many factors; one of them can be the physical discomfort. In this paper one presents the medical system to prevent the discomfort and to identify the subject behavior during the sleep. The epochs of the sleep are classified using the fuzzy system with many inputs. The aim of this analysis is to realize an expert system to diagnose the sleep. A good diagnostic is obtained if the patient is supervised along all day. The system has a microsystem to control, command the pressure sensors and the relay for tuning the airbags pressure.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.