Pathogenic bacterial cell detection is currently performed using techniques such as culture enrichment and various plating methods, which are expensive and can take up to several days. In this study, we describe the design, fabrication, and testing of a rapid and inexpensive sensor for detection of target cells electrically in
real-time. The sensor operates with the use of microelectrodes integrated in a micro-channel. As a proof of principle, we have successfully demonstrated real-time detection of target yeast cells with a concentration of 107 cells/ml. We have also demonstrated the selectivity of our sensors in responding to target cells while remaining irresponsive to non-target cells. We also perform theoretical modeling in order to determine the ultimate detection limit of the sensor. Based on our modeling results, proper optimization of the sensor can yield detection limits approaching the single cell level.
Pyrosequencing is a DNA sequencing technique that takes advantage of the cooperativity of four enzymes in a single- tube to determine the nucleotide composition of a DNA fragment in real-time. In this manuscript we describe the methodology and the use of this technology for analysis of single nucleotide polymorphisms, although, this technique has also been used for sequence determination of difficult secondary structures, mutation detection, EST sequencing, virus and bacteria typing, and re-sequencing of disease genes. Recent break-through has enabled long read data up to 200 nucleotides to be obtained in a single run. Automated microtiter plate based Pyrosequencing systems have been developed allowing DNA analyses of between 5000 to 50,000 samples per day. We are now miniaturizing this technique to reduce the cost for sequencing by at least two order of magnitudes. The array format proofs the feasibility of this system for DNA sequencing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.