Precise assessment of nerve injury optimizes outcomes after surgical nerve repair. Photoacoustic imaging is a promising technique for this intraoperative assessment, but is challenged by optical scattering which reduces light penetration into nerve tissue. This work investigates custom light delivery methods to enhance optical penetration into nerve tissue using Monte Carlo simulations. Light sources were positioned in four configurations surrounding the nerve using sparse activation patterns that were evenly distributed or clustered. Results indicate that a custom light delivery system with combined radial and lateral trajectory illumination maximize optical penetration into nerve tissue for intraoperative photoacoustic assessment of nerve injury.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.