We present a sub-2-cycle laser system combining high average power, pulse energy and repetition rate with CEP-stable operation. The laser system creates 300 fs pulses with 1.8 mJ pulse energy that are nonlinearly post-compressed down to few optical cycles in two subsequent multipass cells (MPC). A pulse duration of 5.8fs (sub-2-cycle) at a pulse energy of 1.1mJ in combination with 110W average power (100 kHz) is achieved. This corresponds to the shortest pulses and highest compressed average power for few-cycle MPCs. Furthermore, the carrier-to-envelope-phase stability amounts to 300 mrad for frequencies above 2 kHz as measured by stereo—above-threshold-ionization (ATI).
We present a CEO-stable 1.1 kW CPA system that is designed to drive a few-cycle-generation stage (<6fs pulse duration) and a subsequent atto-second beamline at the ELI-ALPS facility in Szeged. It currently delivers >300W of average power at 100kHz repetition-rate providing <10fs pulses. The chirped-pulse-amplification system (CPA) demonstrates excellent noise properties with <220mrad of the integrated carrier-envelope-offset (CEO) noise (10Hz to 20MHz) at a pulse repetition rate of 80MHz while the relative-intensity-noise (RIN) stayed <0.3%. This is the first CEO-stable laser system at 1kW level average power.
Here we present the latest experimental results of a high-power CEP-stable FCPA system. The 16-channel FCPA runs at 0.3% RMS power stability (>9hours) delivering more than 1kW and 10mJ after the compressor at a pulse duration of 280fs. To generate 6fs pulses, stretched hollow-core fibers are being employed. We present a significant up-scaling of this technique towards an output of 5mJ, 100kHz and 6fs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.