Point target detection in hyperspectral data is often plagued by the inability to distinguish between the target and a (relatively) few false alarms. Even when, overall, the signal to noise ratio (SNR) to the overall data is good, the false alarms render use of many detection algorithms problematic. To solve this problem, we propose a two-step process for analyzing the data. We start by performing the standard matched filter (MF) algorithm. While the original covariance matrix is based on all the pixels in the hyperspectral cube, a second covariance matrix is constructed based on the highest detections. Running the algorithm a second time on the original data with this new covariance matrix, we distinguish between the targets and these background false detections. This new method was tested on real world test data and compared to traditional matched filter method results. In all cases, the new method showed a significant decrease in false alarms. Other benchmark metrics show the efficacy of this method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.