The Laser Megajoule facility, developed by the CEA is based on 176 Nd:glass laser beams focused on a micro -target positioned inside a 10-meter diameter spherical chamber. The facility will deliver a total energy of 1.4MJ of UV light at 0.35 μm and a maximum power of 400 TW. A specific pétawatt beam, PETAL, offers a combination of a very high intensity beam, synchronized with the nanosecond beams of the LMJ. This combination allows expanding the LMJ experimental field in the High Energy Density Physics (HEDP) domain. Since October 2019, 56 beams are fully operational (7 bundle of 8 beams). The installation and the commissioning of new laser bundles and new plasma diagnostics around the target chamber are continuing, simultaneously to the realization of plasma experiments. A major project milestone has been achieved at the end of 2019, with the first experiment in the facility involving neutron production, through D-D reaction in a D2 capsule inside a gold rugby cavity. The next major milestones for LMJ will take place at the end of 2021 with the commissioning of the half LMJ (10 heating bundles of 8 beams and a specific bundle for plasma diagnostics purpose). The full presentation will describe the software environment used for the laser operation, the first results on the laser damages using our 3w optical components inspection system, the laser damages analysis software, the system of spot blocking, and the last performances obtained with the PETAL beam.
The Laser MegaJoule (LMJ) is a 176-beamlines facility, located at the CEA CESTA near Bordeaux (France). It is designed to deliver about 1.4 MJ of ultraviolet laser energy on targets set in vacuum chamber, for high energy density physics experiments, including fusion experiments. The commissioning of the seven first bundles of height beams is achieved since November 2019 and the commissioning of next bundles is on the way. For performance requirements, it is important to follow final optics behavior. Moreover, for questions of manufacturability, ease of maintenance and cost, the understanding and the improvement of vacuum windows laser damage resistance are of main importance. The MDCC (Center Chamber Diagnostic System) is thus operating since November 2018 on the LMJ facility. It consists in a high resolution CCD camera combined with a predefined focus set of optics. The resolution of this system is about 100μm with a working distance of 8 m. This system can perform 3 functions: damage detection on the vacuum window surface, the measurement of the spatial profile on the vacuum window plane and of final optics transmission.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.