This paper is focused on manufacture technology of molecular self-assembled monolayers (SAM) using
microcontact printing (μCP) techniqe. This technique, due to its low-cost and simplicity, is a very attractive one for
further development of molecular electronics and nanotechnology. The SAM can be produced on gold or silicon oxide
using thiol and silane based chemistry respectively[1]. The μCP techniques allow the imposition of molecular structures
in specific areas. The chemical properties of the fabricated layers depend on the functional groups of tail molecules. Such
structures can be used as chemical receptors or as interface between the substrate and the biosensor receptors [2].
Architecture of the tail molecule determines the chemical reactivity and hydrophilic or hydrophobic properties. In
addition it modifies the tribological properties [4] and electrical structure parameters, such as contact potential diference
(CPD) [5]. The height of the SAM structure containing carbon chain is highly dependent on the length and type of
binding molecules to the substrate, which enables application of the μCP SAM structures in height metrology. The
results of these studies will be presented in the work.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.