Zernike polynomials are orthogonal polynomials that form a complete basis set and can be easily used to describe aberrations present in an optical system. Zernike modes find applications in various fields like adaptive optics (AO), optical imaging, ophthalmology, free space optical (FSO) communication, etc. Since the modes are orthogonal, they can express any arbitrary wavefront as their linear combinations. The orthogonality of the modes enables the calculation of the expansion coefficients and suggests the independent behaviour of the Zernike mode. In this work, we numerically estimate the wavefront, defined as Zernike modes, using various state of the art phase retrieval methods. We use the Zonal wavefront sensor (ZWFS) and Transport of Intensity Equation (TIE) for phase reconstruction and then calculate the orthogonality between reconstructed Zernike modes. It is found that the reconstructed Zernike modes are not perfectly orthogonal, which is mainly due to the discrete representation of the Zernike modes. We further investigate how the change in the number of zones in a ZWFS affects orthogonality. We also simulate TIE to retrieve the phase and compare the orthogonality results with ZWFS. This study will be helpful in applications where a wavefront described using Zernike mode needs to be reconstructed, and improvement in the orthogonality is required, which is achieved by increasing the number of zones in the ZWFS and representing Zernike modes in a more continuous form.
The wavefront measurement accuracy of a grating array based zonal wavefront sensor (GAWS) can be affected by the non-uniform focal spot array and unwanted orders in the detector plane. The non-uniform focal spot array is the outcome of the non-uniform nature of the incident illumination beam’s intensity profile. This paper describes a method that dynamically modulates the laser beam’s intensity using computer generated holography, making the focal spot array uniform and eliminating unwanted spots in a detector plane, thereby enhancing the accuracy of the wavefront measurement. Here, we present proof-of-principle simulation results that demonstrate the working of the proposed improvements in GAWS.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.