Taking the one-dimensional Laser Doppler Velocimeter (LDV) and a certain type of Laser Gyro Strapdown Inertial Navigation System (SINS) developed our staff room for object, the paper verifies that dynamic calibration technique can be achieved by SINS/LDV integrated system on the basis of the analysis of the software and hardware conditions. Extended Kalman filter states of SINS/LDV integrated system were chosen based on the error models of SINS and LDV. Using the difference of the output speed of the SINS and LDV as measurement, the error of bias and scale factor of the integrated navigation system are estimated effectively by setting up a reasonable calibration path. The effectiveness of the algorithm is further verified through the vehicular experiments. The results of experiments show that the dynamic calibration technique can be achieved through SINS/LDV integrated system and ensure the maneuverability of terrestrial inertial navigation system. The estimate of LDV scale factor is about 0.003%. The estimate error of accelerometer bias no more than 13μg. The estimate error of gyroscope drift no more than 1.7×10-3°/h. The yaw angle error is less than 0.19 ' within 20min.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.