This paper presents refinements to the design of the TMT primary mirror segment passive-support system that are
effective in reducing gravity print-through and thermal distortion effects. First, a novel analytical method is presented
for tuning the axial and lateral support systems in a manner that results in improved optical performance when subject to
varying gravity fields. The method utilizes counterweights attached to the whiffletrees to cancel astigmatic and comatic
errors normally resulting when the lateral support system resists transverse loads induced by gravity. Secondly, several
central diaphragm designs are presented and analyzed to assess lateral-gravity and thermal distortion performance: 1) a
simple flat diaphragm, 2) a stress-relieving diaphragm having a slotted outer rim and a circumferential convolution near
the outside diameter, and 3) a flat diaphragm having a slotted outer rim. The latter design is chosen based on results from
analytical studies which show it to have better overall optical performance in the presence of gravity and thermal
environments.
This paper describes the studies performed to establish a baseline conceptual design of the Segment Support Assembly
(SSA) for the Thirty Meter Telescope (TMT) primary mirror. The SSA uses a combination of mechanical whiffletrees
for axial support, a central diaphragm for lateral support, and a whiffletree-based remote-controlled warping harness for
surface figure corrections. Axial support whiffletrees are numerically optimized to minimize the resulting gravityinduced
deformation. Although a classical central diaphragm solution was eventually adopted, several lateral support
concepts are considered. Warping harness systems are analyzed and optimized for their effectiveness at correcting
second and third order optical aberrations. Thermal deformations of the optical surface are systematically analyzed
using finite element analysis. Worst-case performance of the complete system as a result of gravity loading and
temperature variations is analyzed as a function of zenith angle using an integrated finite element model.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.