The Dragonfly Spectral Line Mapper is an innovative all-refracting telescope designed to carry out ultra-low surface brightness wide-field mapping of visible wavelength line emission. Equipped with ultranarrowband (0.8nm bandwidth) filters mounted in Dragonfly Filter-Tilter instrumentation, the Dragonfly Spectral Line Mapper maps Hα, [NⅡ]λ6583, and [OⅢ]λ5007 line emission produced by structures with sizes ranging from ∼1 to 1000kpc in the local Universe. These spatial scales encompass that of the exceedingly diffuse and faintly radiating circumgalactic medium, which is singularly difficult to detect with conventional mirror-based telescope instrumentation. Extremely careful control of systematics is required to directly image these large scale structures, necessitating high fidelity sky background subtraction, wavelength calibration, and specialized flat-fielding methods. In this paper, we discuss the on-sky performance of the Dragonfly Spectral Line Mapper with these methods in place.
The Dragonfly Spectral Line Mapper is a mosaic telescope comprising 120 Canon telephoto lenses, based on the design of the Dragonfly Telephoto Array. With a wide field of view, and the addition of the “Dragonfly Filter-Tilter” instrumentation holding ultra narrow bandpass filters in front of each lens, the Dragonfly Spectral Line mapper is optimized for ultra low surface brightness imaging of visible wavelength line emission. The Dragonfly Spectral Line Mapper was constructed and commissioned in four phases from March 2022 to November 2023. During this time, four individual mounts of 30 lenses each were constructed and commissioned. The commissioning of the telescope included the deployment of the “Dragonfly StarChaser” which carries out image stabilization corrections in the telephoto lens, to enable hour-long exposures to be taken. In addition, we introduced new instrumentation such as a film to cover the optics to keep the filters clean. Here we describe the updated design of the complete 120-lens array, and the implementation of the instrumentation described above. Additionally, we present updated characterization of the cameras and filter transmission for the full array. Finally, we reflect on the construction and commissioning process of the complete 120-lens array Dragonfly Spectral Line Mapper, and remark on the feasibility of a larger 1000-lens array.
The Dragonfly Spectral Line Mapper (DSLM) is a semi-autonomous, distributed-aperture based telescope design, featuring a modular setup of 120 Canon telephoto lenses, and equal numbers of ultra-narrowband filters, detectors, and other peripherals. Here we introduce the observatory software stack for this highly-distributed system. Its core is the Dragonfly Communication Protocol (DCP), a pure-Python hardware communication framework for standardized hardware interaction. On top of this are 120 REST-ful FastAPI web servers, hosted on Raspberry Pis attached to each unit, orchestrating command translation to the hardware and providing diagnostic feedback to a central control system running the global instrument control software. We discuss key features of this software suite, including docker containerization for environment management, class composition as a flexible framework for array commands, and a state machine algorithm which controls the telescope during autonomous observations.
We present a low-cost ultraviolet to infrared absolute quantum efficiency detector characterization system developed using commercial off-the-shelf components. The key components of the experiment include a light source, a regulated power supply, a monochromator, an integrating sphere, and a calibrated photodiode. We provide a step-by-step procedure to construct the photon and quantum efficiency transfer curves of imaging sensors. We present results for the GSENSE 2020 BSI CMOS sensor and the Sony IMX 455 BSI CMOS sensor. As a reference for similar characterizations, we provide a list of parts and associated costs along with images of our setup.
Telescope arrays allow high-performance wide-field imaging systems to be built more quickly and at lower cost than conventional telescopes. Distributed aperture telescopes (the premier example of which is the Dragonfly Telephoto Array) are a special type of array in which all telescopes point at roughly the same position in the sky. In this configuration the array performs like a large and optically very fast single telescope with unusually good control over systematic errors. In a few key areas, such as low surface brightness imaging over wide fields of view, distributed aperture telescopes outperform conventional survey telescopes by a wide margin. In these Proceedings we outline the rationale for distributed aperture telescopes, and highlight the strengths and weaknesses of the concept. Areas of observational parameter space in which the design excels are identified. These correspond to areas of astrophysics that are both relatively unexplored and which have unusually strong breakthrough potential.
The Dragonfly Spectral Line Mapper (DSLM) is the latest evolution of the Dragonfly Telephoto Array, which turns it into the world’s most powerful wide-field spectral line imager. The DSLM will be the equivalent of a 1.6m aperture f/0.26 refractor with a built-in Integral Field Spectrometer, covering a five square degree field of view. The new telescope is designed to carry out ultra-narrow bandpass imaging of the low surface brightness universe with exquisite control over systematic errors, including real-time calibration of atmospheric variations in airglow. The key to Dragonfly’s transformation is the “Filter-Tilter”, a mechanical assembly which holds ultra-narrow bandpass interference filters in front of each lens in the array and tilts them to smoothly shift their central wavelength. Here we describe our development process based on rapid prototyping, iterative design, and mass production. This process has resulted in numerous improvements to the design of the DSLM from the initial pathfinder instrument, including changes to narrower bandpass filters and the addition of a suite of calibration filters for continuum light subtraction and sky line monitoring. Improvements have also been made to the electronics and hardware of the array, which improve tilting accuracy, rigidity and light baffling. Here we present laboratory and on-sky measurements from the deployment of the first bank of lenses in May 2022, and a progress report on the completion of the full array in early 2023.
The pathfinder Dragonfly Spectral Line Mapper is a mosaic-design telescope based off of the Dragonfly Telephoto Array with additional instrumentation (the Dragonfly “Filter-Tilter”) to enable ultranarrow bandpass imaging. The pathfinder is composed of three redundant optical tube assemblies (OTAs) which are mounted together to form a single field of view imaging telescope (where the effective aperture diameter increases as the square-root of the number of OTAs). The pathfinder has been on sky from March 2020 to October 2021 equipped with narrowband filters to provide proof-of-concept imaging, surface brightness limit measurements, on sky testing, and observing software development in advance of the upcoming full Dragonfly Spectral Line Mapper. Here we describe the pathfinder telescope and the sensitivity limits reached along with observing methods. We outline the current limiting factors for reaching ultra-low surface brightnesses and present a comprehensive comparison of instrument sensitivities to low surface brightness line emission and other methods of observing the ultra-faint line emission from diffuse gas. Finally, we touch on plans for the upcoming 120-OTA Dragonfly Spectral Line Mapper, currently under construction.
We describe plans for adding a wide-field narrow-band imaging capability to the Dragon y Telephoto Array. Our plans focus on the development of the ‘Dragon y Filter-Tilter', a device which places ultra-narrow bandpass interference filters (Δλ ≈1 nm) in front of each of the lenses that make up the array. The filters are at the entrance pupil of the optical system, rather than in a converging beam, so their performance is not degraded by a converging light cone. This allows Dragon y to image with a spectral bandpass that is an order of magnitude narrower than that of telescopes using conventional narrow-band filters, resulting in a large increase in the contrast and detectability of extended low surface brightness line emission. By tilting the filters, the central wavelength of the transmission curve can be tuned over a range of 7 nm, corresponding to a physical distance range of about 20 Mpc for extragalactic targets. A further benefit of our approach is that it allows off-band observations to be obtained at the same time as on-band observations, so systematic errors introduced by rapid sky variability can be removed with high precision. Taken together, these characteristics should give our imaging system the ability to detect extremely faint low-surface brightness line emission. Future versions of the Dragon y Telephoto Array may have the sensitivity needed to directly image the circumgalactic medium of local galaxies. In this paper, we provide a detailed description of the concept, and present laboratory measurements that are used to verify the key ideas behind the instrument.
The Gemini Infrared Multi-Object Spectrograph (GIRMOS) is a powerful new instrument being built to facility- class standards for the Gemini telescope. It takes advantage of the latest developments in adaptive optics and integral field spectrographs. GIRMOS will carry out simultaneous high-angular-resolution, spatially-resolved infrared (1 - 2.4 µm) spectroscopy of four objects within a two-arcminute field-of-regard by taking advantage of multi-object adaptive optics. This capability does not currently exist anywhere in the world and therefore offers significant scientific gains over a very broad range of topics in astronomical research. For example, current programs for high redshift galaxies are pushing the limits of what is possible with infrared spectroscopy at 8 -10- meter class facilities by requiring up to several nights of observing time per target. Therefore, the observation of multiple objects simultaneously with adaptive optics is absolutely necessary to make effective use of telescope time and obtain statistically significant samples for high redshift science. With an expected commissioning date of 2023, GIRMOS’s capabilities will also make it a key followup instrument for the James Webb Space Telescope when it is launched in 2021, as well as a true scientific and technical pathfinder for future Thirty Meter Telescope (TMT) multi-object spectroscopic instrumentation. In this paper, we will present an overview of this instrument’s capabilities and overall architecture. We also highlight how this instrument lays the ground work for a future TMT early-light instrument.
We present the first measurements of the near-infrared (NIR), specifically the J-band, sky background in the Canadian High Arctic. There has been considerable recent interest in the development of an astronomical observatory in Ellesmere Island; initial site testing has shown promise for a world-class site. Encouragement for our study came from sky background measurements on the high Antarctic glacial plateau in winter that showed markedly lower NIR emission when compared to good mid-latitude astronomical sites due to reduced emission from the Meinel bands, i.e. hydroxyl radical (OH) airglow lines. This is possibly a Polar effect and may also be present in the High Arctic. To test this hypothesis, we carried out an experiment which measured the the J-band sky brightness in the High Arctic during winter. We constructed a zenith-pointing, J-band photometer, and installed it at the Polar Environment Atmospheric Research Laboratory (PEARL) near Eureka, Nunavut (latitude: 80° N). We present the design of our ruggedized photometer and our results from our short PEARL observing campaign in February 2012. Taken over a period of four days, our measurements indicate that the
J-band sky brightness varies between 15.5-15.9 mag arcsec2; with a measurement uncertainty of 0.15 mag. The
uncertainty is entirely dominated by systematic errors present in our radiometric calibration. On our best night, we measured a fairly consistent sky brightness of 15.8 ± 0.15 mag arcsec2. This is not corrected for atmospheric extinction, which is typically < 0.1 mag in the J-band on a good night. The measured sky brightness is
comparable to an excellent mid-latitude site, but is not as dark as claimed by the Antarctic measurements. We
discuss possible explanations of why we do not see as dark skies as in the Antarctic. Future winter-long sky
brightness measurements are anticipated to obtain the necessary statistics to make a proper comparison with
the Antarctic measurements.
The Fine Guidance Sensor (FGS) is one of the four science instruments on board the James Webb Space Telescope (JWST). FGS features two modules: an infrared camera dedicated to fine guiding of the observatory and a science camera module, the Near-Infrared Imager and Slitless Spectrograph (NIRISS) covering the wavelength range between 0.7 and 5.0 μm with a field of view of 2.2' X 2.2'. NIRISS has four observing modes: 1) broadband imaging featuring seven of the eight NIRCam broadband filters, 2) wide-field slitless spectroscopy at a resolving power of rv150 between 1 and 2.5 μm, 3) single-object cross-dispersed slitless spectroscopy enabling simultaneous wavelength coverage between 0. 7 and 2.5 μm at Rrv660, a mode optimized for transit spectroscopy of relatively
bright (J > 7) stars and, 4) sparse aperture interferometric imaging between 3.8 and 4.8 μm enabling high
contrast ("' 10-4) imaging of M < 8 point sources at angular separations between 70 and 500 milliarcsec. This
paper presents an overview of the FGS/NIRISS design with a focus on the scientific capabilities and performance offered by NIRISS.
The Fine Guidance Sensor (FGS) of the James Webb Space Telescope (JWST) features a tunable filter imager (TFI)
module covering the wavelength range from 1.5 to 5.0 μm at a resolving power of ~100 over a field of view of
2.2'×2.2'. TFI also features a set of occulting spots and a non-redundant mask for high-contrast imaging. This paper
presents the current status of the TFI development. The instrument is currently under its final integration and test phase.
We present plans for the commissioning of the new GMOS-N red-sensitive science detectors, currently being integrated
into a new focal plane assembly at the NRC HIA. These Hamamatsu CCDs provide significantly higher quantum
efficiency than the existing detectors at red optical wavelengths (longward of ~ 700 nm), with > 80% QE at 900 nm
falling to ~10% QE at 1.05 μm. This upgrade not only improves current operations with GMOS-N, but also opens new
spectral ranges and potential observing modes (eg. use with Altair, the Gemini-N AO module). Care has been taken to
ensure that Nod & Shuffle will still be supported, since accurate sky subtraction is increasingly important at longer
wavelengths due to the increased density of sky lines. The commissioning plan aims to demonstrate the improvement in
current modes while minimizing the period of GMOS-N downtime for science use. The science commissioning is
currently scheduled for mid-November 2010.
The Fine Guidance Sensor (FGS) of the James Webb Space Telescope (JWST) features a tunable filter imager (TFI)
module covering the wavelength range from 1.6 to 4.9 μm at a resolving power of ~100 over a field of view of
2.2'x2.2'. TFI also features a set of 4 occulting spots for coronagraphy. A review of the current design and development
status of TFI is presented along with two key TFI science programs: the detection of first light, high-redshift Lyα
emitters and the detection/characterization of exoplanets.
The Flamingos-2 Tandem Tunable filter is a tunable, narrow-band filter, consisting of two Fabry-Perot etalons in series,
capable of scanning to any wavelength from 0.95 to 1.35 microns with a spectral resolution of R~800. It is an accessory
mode instrument for the near-IR Flamingos-2 imaging-spectrograph designed for the Gemini South 8m Observatory and
will be fed through the upcoming Multi-Conjugate Adaptive Optics feed. The primary science goal of the F2T2 filter is
to perform a ground-based search for the first star forming regions in the universe at redshifts of 7 < z < 11. The
construction of the F2T2 filter is complete and it is currently in its calibration and commissioning phases. In this
proceeding, we describe the calibration and performance of the instrument.
WFOS (Wide Field Optical Spectrograph) will provide near-UV, visible and near-IR multi-object spectroscopy and imaging capabilities for the TMT (Thirty Meter Telescope). The instrument concept is a multi-barrel approach, with four separate fields on the telescope focal plane providing a total of 92.4 square arcminutes of coverage. The core wavelength coverage is 340nm to 1000nm with an optional near-IR extension to 1.6 microns. Each barrel feeds two cameras allowing simultaneous spectral coverage in the blue and red. Spectral resolutions range from R150 to R7500 for a 0.75" slit using standard ruled transmission gratings and VPH technology. A GLAO (Ground Layer Adaptive Optics) system utilizing the TMT adaptive secondary mirror is included in the instrument concept. This paper describes the scientific goals for WFOS and the overall instrument mechanical, optical and system design.
KEYWORDS: Fabry–Perot interferometers, Gemini Observatory, Spectral resolution, Calibration, Space telescopes, Telescopes, Control systems, Electronics, Device simulation, Digital signal processing
COM DEV Ltd. is building a tandem tunable Fabry-Perot etalon to be mounted inside the Flamingos-2 imaging spectrograph on the Gemini South Telescope. The Flamingos-2 Tandem Tunable Filter has a target spectral resolution of R~800 and a clear aperture of 60 mm, and will be fed by the telescope's Multi-Conjugate Adaptive Optics system. The system is designed to undertake ultra-deep searches for "First-Light" sources at redshifts of z = 7-10 using foreground gravitational lensing. This paper describes preliminary characterization and expected performance F2T2.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.