The initial on-orbit checkout of the soft X-ray spectroscopic system on board the XRISM satellite is summarized. The satellite was launched on September 6, 2023 (UT) and has been undergoing initial checkout since then. Immediately after the launch, the cryocoolers were turned on and their operation was established. The first cycle of the adiabatic demagnetization refrigerator was performed on Oct. 9th, 2023, to transition the sensor to steady-state operational temperature conditions. Subsequently, the filter wheel, which supports energy calibration, was started up. The energy scale is highly sensitive to the temperature environment around the sensor and its analog electronics. The gain correction was established by referring to the calibration X-ray line. For an optimization of the cooler frequencies, we took data including the noise spectra by scanning the cooler frequencies, and selected a good frequency pair in the on-orbit environment. At the last stage of the checkout, the gate valve, which protects the inside of the Dewar from outside air pressure at launch, was attempted to be opened to bring the system to a state where it is ready for regular operations but was failed.
We present the design and performance of the XRISM Soft X-Ray Spectrometer Resolve, successfully launched on a JAXA H-IIA rocket September 7, 2023. The instrument uses a 36-pixel array of microcalorimeters at the focus of a grazing-incidence x-ray mirror. The instrument has achieved an energy resolution of 4.5 eV (FWHM) at 6. The overall cooling chain was designed to provide a lifetime of at least 3 years in orbit and operate without liquid helium to provide redundancy and the longest operational lifetime for the instrument. Early indications that the cryogen lifetime will exceed 4 years. X-rays are focused onto the array with a high-throughput grazing incidence X-ray Mirror Assembly with over 200 nested two-stage X-ray reflectors. A series of onboard X-ray calibrations sources allow simultaneous energy scale calibration lines simultaneously while observing celestial sources. The inflight performance of Resolve will be described along with a summary of the scientific capabilities.
The Resolve instrument aboard the X-ray Imaging and Spectroscopy Mission (XRISM) is a 36-pixel microcalorimeter spectrometer that provides non-dispersive spectroscopy with 5 eV spectral resolution in the soft x-ray waveband. Resolve has a requirement to provide absolute energy-scale calibration of ± 2 eV from 0.3–12 keV. In this manuscript we describe our ground calibration strategy and results of a subset of the ground calibration campaigns, including a discussion of improvements in the energy scale ground calibration compared to Hitomi’s. These improvements include calibration of the low-energy band below 4 keV with the instrument in the flight dewar and the dewar aperture door open, which was not performed for Hitomi, and thorough measurements over an extended high-energy waveband to 22 keV. We also developed an improved technique for gain calibration of ‘mid-res’ secondary events, which have suppressed gain due to proximity to a preceding x-ray event (18-70 ms) on the same pixel. We provide an assessment of how well these pre-launch gain scales correct on-orbit data and discuss approaches for updating the gain curves. Energy-scale calibration approaches for future space-based instruments, including the X-ray Integral Field Unit (X-IFU) on Athena and the microcalorimeter spectrometer proposed for the Line Emission Mapper (LEM), have heritage in the calibration of XRISM. We briefly comment on lessons learned from Resolve calibration that are relevant for these future instruments.
The Resolve soft X-ray spectrometer is the high spectral resolution microcalorimeter spectrometer for the XRISM mission. In the beam of Resolve there is a filter wheel containing X-ray filters. Also in the beam is an active calibration source (the modulated X-ray source (MXS) which can provide pulsed X-rays to facilitate gain calibration.
The filter wheel consists of 6 filter positions. Two open positions, one 55Fe source to aid in early mission spectrometer characterisation and three transmission filters: a neutral density filter, an optical blocking filter and a beryllium filter.
The X-ray intensity, pulse period and pulse separation of the MXS are highly configurable. Furthermore, the switch–on time is synchronized with the space–craft’s internal clock to give accurate start and end times of the pulses.
One of the issues raised during ground testing was the susceptibility of an MXS at high voltage to ambient light. Although measures were taken to mitigate the light leak, the efficacy of those measures must be verified in–orbit. Along with an overview of issues raised during ground testing, this article will discuss the calibration source and the filter performance in–flight and compare with the transmission curves present in the Resolve calibration database.
Resolve is the instrument that utilizes an X-ray micro-calorimeter array onboard the XRISM (X-Ray Imaging and Spectroscopy Mission), which was launched on September 6 (UT), 2023. It fully met the spectral performance requirement (7 eV at 6 keV) both on the ground and in orbit and was confirmed to have the same performance as the SXS onboard the ASTRO-H (Hitomi) satellite. The detectors are operated at a low temperature of 50 mK to achieve the required energy resolution with the cooling system to satisfy the lifetime requirement of over 3 years. The cooling system is equipped with a 3-stage ADR and superfluid liquid He (LHe) as the heat sink for the ADR. The Joule-Thomson cooler unit and 2-stage Stirling cooler units are adopted to reduce heat load to the LHe. In the pre-launch operations, we carried out the low-temperature LHe top-off operation. The resultant amount of liquid He was over 35 L at the launch, which is sufficient to meet the lifetime requirement. During the post-launch operation, the LHe vent valve was opened five minutes after launch during the rocket acceleration, and the cryocoolers started in several revolutions as planned which established stable cooling of the dewar.
The resolve instrument onboard the X-Ray Imaging and Spectroscopy Mission (XRISM) consists of an array of 6 × 6 silicon-thermistor microcalorimeters cooled down to 50 mK and a high-throughput x-ray mirror assembly (XMA) with a focal length of 5.6 m. XRISM is a recovery mission of ASTRO-H/Hitomi, and the Resolve instrument is a rebuild of the ASTRO-H soft x-ray spectrometer (SXS) and the Soft X-ray Telescope (SXT) that achieved energy resolution of ∼5 eV FWHM on orbit, with several important changes based on lessons learned from ASTRO-H. The flight models of the Dewar and the electronics boxes were fabricated and the instrument test and calibration were conducted in 2021. By tuning the cryocooler frequencies, energy resolution better than 4.9 eV FWHM at 6 keV was demonstrated for all 36 pixels and high resolution grade events, as well as energy-scale accuracy better than 2 eV up to 30 keV. The immunity of the detectors to microvibration, electrical conduction, and radiation was evaluated. The instrument was delivered to the spacecraft system in 2022-04 and is under the spacecraft system testing as of writing. The XMA was tested and calibrated separately. Its angular resolution is 1.27′ and the effective area of the mirror itself is 570 cm2 at 1 keV and 424 cm2 at 6 keV. We report the design and the major changes from the ASTRO-H SXS, the integration, and the results of the instrument test.
SPICA is a mid to far infra-red space mission to explore the processes that form galaxies, stars and planets. SPICA/SAFARI is the far infrared spectrometer that provides near-background limited observations between 34 and 230 micrometers. The core of SAFARI consists of 4 grating modules, dispersing light onto 5 arrays of TES detectors per module. The grating modules provide low resolution (250) instantaneous spectra over the entire wavelength range. The high resolution (1500 to 12000) mode is accomplished by placing a Fourier Transform Spectrometer (FTS) in front of the gratings. Each grating module detector sees an interferogram from which the high resolution spectrum can be constructed. SAFARI data will be a convolution of complex spectral, temporal and spatial information. Along with spectral calibration accuracy of < 1 %, a relative flux calibration of 1% and an absolute flux calibration accuracy of 10% are required. This paper will discuss the calibration strategy and its impact on the instrument design of SAFARI
7010-5Thijs de Graauw, Nick Whyborn, Frank Helmich, Pieter Dieleman, Peter Roelfsema, Emmanuel Caux, Tom Phillips, Jürgen Stutzki, Douwe Beintema, Arnold Benz, Nicolas Biver, Adwin Boogert, Francois Boulanger, Sergey Cherednichenko, Odile Coeur-Joly, Claudia Comito, Emmanuel Dartois, Albrecht de Jonge, Gert de Lange, Ian Delorme, Anna DiGiorgio, Luc Dubbeldam, Kevin Edwards, Michael Fich, Rolf Güsten, Fabrice Herpin, Netty Honingh, Robert Huisman, Herman Jacobs, Willem Jellema, Jon Kawamura, Do Kester, Teun Klapwijk, Thomas Klein, Jacob Kooi, Jean-Michel Krieg, Carsten Kramer, Bob Kruizenga, Wouter Laauwen, Bengt Larsson, Christian Leinz, Rene Liseau, Steve Lord, Willem Luinge, Anthony Marston, Harald Merkel, Rafael Moreno, Patrick Morris, Anthony Murphy, Albert Naber, Pere Planesas, Jesus Martin-Pintado, Micheal Olberg, Piotr Orleanski, Volker Ossenkopf, John Pearson, Michel Perault, Sabine Phillip, Mirek Rataj, Laurent Ravera, Paolo Saraceno, Rudolf Schieder, Frank Schmuelling, Ryszard Szczerba, Russell Shipman, David Teyssier, Charlotte Vastel, Huib Visser, Klaas Wildeman, Kees Wafelbakker, John Ward, Roonan Higgins, Henri Aarts, Xander Tielens, Peer Zaal
This paper describes the Heterodyne Instrument for the Far-Infrared (HIFI), to be launched onboard of ESA's Herschel Space Observatory, by 2008. It includes the first results from the instrument level tests. The instrument is designed to be electronically tuneable over a wide and continuous frequency range in the Far Infrared, with velocity resolutions better than 0.1 km/s with a high sensitivity. This will enable detailed investigations of a wide variety of astronomical sources, ranging from solar system objects, star formation regions to nuclei of galaxies.
The instrument comprises 5 frequency bands covering 480-1150 GHz with SIS mixers and a sixth dual frequency band, for the 1410-1910 GHz range, with Hot Electron Bolometer Mixers (HEB). The Local Oscillator (LO) subsystem consists of a dedicated Ka-band synthesizer followed by 7 times 2 chains of frequency multipliers, 2 chains for each frequency band. A pair of Auto-Correlators and a pair of Acousto-Optic spectrometers process the two IF signals from the dual-polarization front-ends to provide instantaneous frequency coverage of 4 GHz, with a set of resolutions (140 kHz to 1 MHz), better than < 0.1 km/s. After a successful qualification program, the flight instrument was delivered and entered the testing phase at satellite level. We will also report on the pre-flight test and calibration results together with the expected in-flight performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.