One of the challenges of laser cooling a semiconductor is the typically high index of refraction (greater than 3), which limits efficient light output of the upconverted photon. This challenge is proposed to be met with a novel concept of coupling the photon out via a thin, thermally insulating vacuum gap that allows light to pass efficiently by frustrated total internal reflection. This study has the goal of producing a test structure that allows investigation of heat transport across a 'nanogap' consisting of a thin film supported over a substrate by an array of nanometer-sized posts. The nanogap is fabricated monolithically by first creating a film of SiO2 on a silicon substrate, lithographically defining holes in the SiO2, and covering this structure including the holes with silicon. Selective lateral etching will then remove the SiO2, leaving behind a thin gap between two Si layers spaced apart by nanometer-scale Si posts. Demonstration of this final step by successfully undercutting the a-Si upper layer due to the hydrophobic nature of silicon and the slow etch rate of buffered oxide etch in the small gap has proved to be problematic. Arriving at a feasible solution to this conundrum is the current objective of this project in order to begin investigating the thermal conductivity properties of the structure.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.