The demand for an ultrabroad optical material with a bandgap tunable from zero to at least 1–2 eV has been one of the driving forces for exploring new 2D materials since the emergence of graphene, transition metal dichalcogenides, and black phosphorus. As an ultra-broadband 2D material with energy bandgap ranging from 0 to 1.2 eV, layered PtSe2 shows much better air stability than its analogue, black phosphorous. In this work, high quality of centimeter scale PtSe2 films with controllable thicknesses were prepared through thermally assisted conversion method. The linear and nonlinear optical performance and ultrafast dynamics of layered PtSe2, and signatures of the transition from semiconductor to semimetal have been systematically studied experimentally and theoretically. Combining with rate equations, first-principles calculation, and electrical measurements, a comprehensive understanding about the evolution of nonlinear absorption and carrier dynamics with increasing layer thickness is provided, indicating its promising potential in nanophotonic devices such as infrared detectors, optical switches, and saturable absorbers.
Two-dimensional (2D) layered transition metal dichalcogenides (TMDCs) exhibit unique nonlinear optical (NLO) features and have becoming intriguing and promising candidate materials for photonic and optoelectronic devices with high performance and unique functions. Owing to layered geometry and the thickness-dependent bandgap, we studied the ultrafast NLO properties of a range of TMDCs. TMDCs with high-quality layered nanosheets were prepared through chemical vapor deposition (CVD) technique and vapor-phase growth method. Saturable absorption, two photon absorption (TPA) and two photon pumped frequency up-converted luminescence were observed from these 2D nanostructures. The exciting results open up the door to 2D photonic devices, such as passive mode-lockers, Q-switchers, optical limiters, light emitters, etc.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.