Breast cancer is the second largest cause of cancer death among women after skin cancer. Mitotic count is an important biomarker for predicting the breast cancer prognosis according to Nottingham Grading System. Pathologists look for tumour areas and select 10 HPF(high power field) images and assign a grade based on the number of mitotic counts. Mitosis detection is a tedious task because the pathologist has to inspect a larger area. The pathologist’s views about mitotic cell are also subjective. Because of these problems, an assisting tool for the pathologist will generalize and reduce the time for diagnosis. Due to recent advancements in whole slide imaging, CAD(computer-aided diagnosis) systems are becoming popular. Mitosis detection for scanner images is difficult because of variability in shape, color, texture and its similar appearance to apoptotic nuclei, darkly stained nuclei structures. In this paper, the mitotic detection task is carried out with state of the art object detector (Faster R-CNN) and classifiers (Resnet152, Densenet169, and Densenet201) for ICPR 2012 dataset. The Faster R-CNN is used in two ways. In first, it was treated as an object detector which gave an F1-score of 0.79 while in second, it was treated as a Region Proposal Network followed by an ensemble of classifiers giving an F1-score 0.75.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.