Optical diffusers have uses in laser applications and machine vision. Typical fabrication at a commercial level requires master production and the stamping/copying of individual elements at scale. This expensive, indirect process inhibits custom diffusers at reasonable cost. Previously the authors published a novel, direct, single beam method of recording customizable and controllable volume holographic diffusers by manipulating laser speckle and recording the pattern in photopolymer. This method allows for beam-shaping to produce diffusion patterns of various sizes and shapes. In this work, the direct method of recording controllable holographic diffusers is refined to improve diffuser performance (i.e., a decrease in zero order strength) for a simple diffuser. This is achieved through optimising the recording conditions (exposure energy, power and layer thickness) for a given photopolymer formulation. Significant improvement in the diffuser efficiency is observed through the optimisation process for a particular speckle size, resulting in a five-fold decrease in the remaining zero order. Kogelnik Coupled Wave Theory (KCWT) is explored as a first step towards developing an appropriate model for the behaviour of holographic elements recorded with interference patterns formed through stochastic processes, such as speckle patterns.
Diffractive Optical Elements (DOEs) utilize diffraction at sub-micron features to re-direct and control light. Volume phase holographic materials, such as photopolymer, are advantageous for use in fabricating optical elements because the diffraction efficiency can approach 100%, the whole element can be recorded in one exposure and high diffraction and slant angles are possible. Self-developing photopolymers also facilitate mass manufacture. Holographic gratings have been developed for numerous applications including spectroscopy, solar concentration, and monochrome LEDs, however, the inherent angular and wavelength selectivity of the volume phase hologram generally restricts applications to laser systems and sources with narrow spectral ranges. Multiplexing more than one grating into a single photopolymer layer can extend the range, however, unwanted additional gratings are frequently recorded.
In this paper, we discuss laminating multiple photopolymer HOEs together as a method for increasing the wavelength and angular working range of devices. This involves combining HOEs designed to produce the desired output beam for different angular and/or spectral input beams. Stacking of photopolymer layers has previously been demonstrated to increase the angular range of gratings and recently the authors produced a compound HOE with significantly broadened wavelength and angular selectivity curves by laminating two HOEs recorded sequentially at a single wavelength. However, such solutions are not easily translated to more complex elements such as lenses where the spatial frequency and grating slant angles are varying.
This paper discusses laminating together two photopolymer layers sensitized for different recording wavelengths for the purpose of holographically recording a compound-element volume-HOE lens for use with a broadband LED. The angular and wavelength selectivity are characterized and the challenges and advantages of the different approaches are discussed and compared.
A volume cylindrical holographic lens is fabricated in a photopolymer material to obtain a simple, lightweight and inexpensive lens which can collimate a diverging light beam. For a collimated beam, it is necessary to have uniform intensity across the beam diameter and to achieve equal diffraction efficiency for different regions of the cylindrical holographic lens, two methods are discussed. In the first method, the diffraction efficiency is improved by modifying the recording geometry in order to operate at a range of spatial frequencies for which the photopolymer provides higher diffraction efficiency. In the second method, the recording has been carried out with varying laser power and exposure time while keeping the exposure energy constant, in order to improve the material’s performance at the lower spatial frequencies. The second approach increases the uniformity of diffraction efficiency across the Holographic optical elements (HOEs) even when low spatial frequency components are present. The results obtained provide cylindrical holographic lenses with overall higher and uniform diffraction efficiency. This type of lens has the potential to be used in combination with LED sources and different lighting applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.