Using semiconductor nanocrystals (NCs) one can produce extremely strong spatial confinement of electronic wave functions not accessible with other types of nanostructures. As a result, NCs exhibit important physical properties which, in combination with the chemical stability and solution processability, make this class of functional materials particularly appealing for several technological fields, such as solid-state lighting, lasers, photovoltaics, and electronics. Generally, the tunability of their physical properties is achieved through particle-size control of the quantum confinement effect. Wavefunction engineering adds a degree of freedom for manipulating the physical properties of NCs by selectively confining the carriers in specific domains of the material, thereby controlling the spatial overlap between the electron and hole wavefunctions. This design has been applied to several material systems in different geometries and has been shown to successfully control the emission energy and recombination dynamics as well as to reduce nonradiative Auger recombination, a process in which, as a consequence of strong spatial confinement, the energy of one electron-hole pair is nonradiatively transferred to a third charge carrier. The focus of this presentation is on nanocrystal heterostructures that comprise a small CdSe core overcoated with a thick shell of wider-gap CdS. These quasi-type II structures show greatly suppressed Auger recombination, which allows us to realize broadband optical gain (extends over 500 meV)1, and are a remarkable class of model compounds for investigating the influence of nanoengineered electron-hole overlap on the exciton fine structure.2 We indeed recently showed that this quasi-type II motif can be used to tune the energy splitting between optically active (“bright”) and optically passive (“dark”) excitons due to strong electron-hole exchange interaction, which is typical of quantum-confined semiconductor nanocrystals. This design provides a new tool for controlling excitonic dynamics including absolute recombination time scales and temperature and magnetic field dependences separately from the confinement energy.
As a result of reduced Auger recombination, in combination with essentially complete suppression of energy-transfer in thick-shell NCs films, we recently fabricated bright, monochrome LEDs based on these nanostructures. Our results indicate that the luminance and efficiency can be improved dramatically by increasing the shell thickness without detrimental effects of increased turn-on voltage.3 Detailed structural and spectroscopic studies reveal a crucial role of interfaces on the Auger recombination process ion these heterostructures. Specifically, we observe a sharp transition to Auger-recombination-free behavior for shell thickness ~1.8-2.5 nm, accompanied by the development of an intense phonon mode characteristic of a CdSeS alloy.4 These results suggest that the likely reason for suppressed Auger recombination in these nanostructures is the “smoothing out” of the otherwise sharp confinement potential due to formation of a graded interfacial CdSeS layer between the CdSe core and the CdS shell, as was recently proposed by theoretical calculations by Cragg and Efros.5
We present the spectroscopic study of the mechanisms of excitation transfer between rare earth ions excited by energy transfer from SnO2 nanocrystals in silica. Bulk samples of pure and Er-doped silica with SnO2 nanoparticles were prepared by a sol gel technique and further thermal sintering process. Transmission electron microscopy (TEM) reveals the formation of spherical nanoclusters with a size distribution strongly determined by erbium doping. Small angle neutron scattering (SANS) experiments confirm and detail the TEM data evidencing the existence of a interphase region at the cluster boundaries where a SnOlike phase compensates the structural mismatch between the crystalline lattice in SnO2 nanoparticles and the amorphous silica network. The analysis of the SANS patterns show what kind of modification of the interphase morphology of SnO2 nanoparticles in silica brings to the passivation of interfacial defects. Surface states, which may preclude the exploitation of UV excitonic emission, are reduced after doping by rare earth ions. We demonstrate, by means of transmission-electron-microscopy and small-angle-neutron-scattering data, that a smooth interphase with a non negligible thickness takes the place of the fractal and discontinuous boundary observed in undoped material. The time resolved photoluminescence spectra of erbium in the infrared region show the spectral profile ascribable to ions in a ordered environment. Moreover, the absence of the broad contribution of the radiative decay of erbium ions dispersed in the silica amorphous matrix indicates that the excitation transfer follows paths enveloped in the interphase region. The spectroscopic analysis allows us to conclude that the excitation is transferred from ion to ion within a quasi-crystalline region where each site is surrounded by a different distribution of PL quenching sites which are responsible for the multi-exponential decay kinetics.
Silica glass with SnO2 nanocrystals, obtained from sol-gel synthesis and thermal densification at 1100 °C, was
poled by means of a two-step process consisting of infrared 1064 nm laser irradiation followed by 532 nm laser
exposure in high-voltage static electric field. Maker fringe experiments were then carried out at 1064 nm.
The results show the formation of second-order nonlinearity with macroscopic nonlinear thickness (about 1
mm) and nonlinear susceptibility comparable with thermally poled silica (about 0.1 pm/V). Photoluminescence
measurements suggest that mechanisms for this process should involve the activation and anisotropic ionization of defects at the interface between nanocrystals and glass.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.