Viral infections such as HIV and SARS-CoV-2 have significantly increased morbidity in humans and resulted in a significant number of fatalities globally, hence early detection is crucial, particularly at a point-of-care (POC) setting to prevent the spread of these diseases. Localized surface plasmon resonance (LSPR) and green light-based Transmission spectroscopy techniques were used in this study to assess real-time molecular interactions between virus-spiked and nonspiked samples. The current study focuses on integrating selenium nanoparticles (SeNPs) with different optical photonic techniques for enhanced detection of HIV. Selenium nanoparticles were synthesized and functionalized with antibodies specific to HIV. Before and after bioconjugation with viral secondary antibodies, the SeNPs were characterized using Ultraviolet–visible (UV-Vis) spectroscopy, Dynamic light scattering (DLS), High-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy, to elucidate their properties and confirm the presence of functional groups. After that, the NPs were integrated with plasmonic systems and used for the enhanced detection of HIV in comparison to traditional LSPR and Transmission spectroscopy. Colloidal selenium nanoparticles were successfully synthesized, using ND: YAG laser. The orange-colored, spherically shaped nanoparticles were evenly distributed and easily resuspended. Anti-HIV antibodies conjugated to SeNPs were added after HIV-specific antibodies were successfully immobilized on a glass slide substrate to react with HIV pseudovirus. The pseudovirus was effectively identified by the use of Transmission Spectroscopy and LSPR techniques. The two optical techniques for HIV detection were more sensitive after integrating selenium nanoparticles, as compared to the conventional Transmission spectroscopy and LSPR methods. This improved and highly sensitive approach may be utilized to identify viral infections early, thus combating the spread of infectious diseases.
Surface plasmon resonance (SPR) biosensors are optical materials that measure changes in the refractive index as they monitor non-covalent molecular interactions in real time. These utilise a label free analytical approach, which does not require dyes to produce a visible signal. In this study SPR was assessed for the detection of DNA hybridization between complementary DNA sequences within the pol gene of the human immunodeficiency virus (HIV) genome. HIV mutates rapidly due to its error prone reverse transcriptase enzyme. Some of these mutations make the virus to be resistant to antiretroviral drugs used to treat HIV infected individuals, rendering the drugs ineffective. In order to assess whether an infected individual expresses any drug resistant mutations, different bio-assays must be performed. However, these tests are expensive and require sophisticated equipment, which might be unavailable in resource limited settings. In a quest to simplify these tests so that they can be used in resource limited settings and reduce costs associated with HIV drug resistance testing, SPR capabilities were explored in this study. This was achieved by amplifying a 174 bp region of the HIV-1 pol gene using polymerase chain reaction (PCR). The detection was based on the hybridization between the PCR amplified DNA sequence and a biotinylated oligonucleotide probe immobilized onto an SPR sensor chip made of a gold coated slide. The acquired results indicated that the SPR-sensor-chip used was able to recognize changes in different wells and thereby able to differentiate between a sample with DNA hybridization and the one without. Based on these findings, this approach has potential to detect HIV drug resistance mutations with high efficiency in less time, at lower cost.
Polypeptide gelatine has been used extensively in microbiology to enhance cellular adhesion and growth. Likewise, fabrication of biochemical sensors using a variety of organic material and nanomaterials is a growing research area particularly in experiments involving single molecular screening. Both fields of study exploit the various interactions that occur at molecular level such as charge-charge binding, hydrogen bonding and van Der Waals forces. In this work, a thin film gelatine based biosensor, containing amino acids such as glycine, proline and hydroxy-proline was synthesized on glass slides using the self-assembly method. Further -adaption involved coating gold nanoparticles onto the substrate to enhance chemical binding and improve signal intensity and sensitivity. Pharmaceutical drugs aspirin and paracetamol were used as analytes to explore the qualitative and quantitative capabilities of the sensor in molecular screening through surface enhanced Raman spectroscopy (SERS). The results showed a distinguishable qualitative difference between the Raman spectra of gelatine-drug (Gel-D) and gelatine-gold-drug (Gel-Au-D) fabricated sensors. Similarly in both Gel-D and Gel-Au-D, the peak areas of the functional groups found in both aspirin and paracetamol increased with drug concentration, yielding satisfactory calibration curves. The gelatine based biosensor thus holds potential as an in vitro sensing platform for screening of pharmaceutical drugs.
Biological macromolecules such as antibodies, enzymes, proteins and aptamers have good molecular recognition ability which makes them good candidates for biosensing applications. In this study, glass substrates were treated with silane in order to immobilize HIV gp41 antibodies on their surfaces. The HIV pseudovirus was added to the treated substrates followed by addition of antibodies conjugated to nanoparticles. The surfaces were characterised by using water contact angle, atomic force microscopy (AFM) and Raman spectroscopy. Our preliminary data displayed that the antibodies were indeed immobilized on the glass substrates which made it possible for capturing the intact HIV pseudovirus. Further, Raman spectroscopy revealed the presence of disulphide bonds indicating successful conjugation of the HIV gp41 antibodies to the HIV pseudovirus.
Raman spectroscopy is commonly used for sample characterization in biology because vibrational information is very specific to the chemical bonds in molecules. This makes it an attractive approach for identification of biological materials such as toxins, viruses or even intact bacterial cells. In addition, Raman spectroscopy has a unique capability of providing label-free intrinsic chemical information, such as molecular bonds in living biological samples at tissue, cellular or subcellular resolution. However, Raman signals are weak and acquiring a spectrum with good signal to noise ratio requires long acquisition time. To overcome this disadvantage of low signal intensities from most biomolecules, enhancement effects are utilized. In this study, a home built Raman spectroscopy optical system combined with a gold thin film deposition was used to detect the HIV gp41 antibody. The Raman system makes use of 785 nm diode laser as excitation source and an Andor CCD camera as detection system. In addition, we report on Raman results obtained with HIV gp41 antiboby using a gold thin film deposition substrate. We could observe significant enhancement of Raman signal from the gold thin film layer deposition. These findings indicate the potential application of Raman spectroscopy in rapid biosensing detection.
Surface enhanced Raman spectroscopy (SERS) has evolved to be a powerful analytical tool for investigating molecular properties of various types of samples. Literature has shown SERS capabilities in both qualitative and quantitative analysis of biomolecules like proteins and DNA as well as single molecules like antiretroviral medication. Central to its application is the synthesis and use of sensing platforms that enhance signal intensity, sensitivity and detection limits. The most popular approach to make such platforms is through fabricating thin film substrates using a combination of polymers and nanomaterials. In this work, we use the self-assembly method to synthesize graphene oxide based scaffolds in a layer-by-layer fashion and characterize them using SERS. The results show a clear difference in Raman spectral fingerprint for the different layers during the self-assembly steps. Lastly, the intensity ratio between the D and G bands of the graphene layer were calculated to measure the layer thickness which was found to be 0.65, this was comparable to thin layer scaffolds reported in literature. Future work will involve the use of atomic force microscopy to confirm surface morphology and layer thickness, followed by screening of antiretroviral medication.
In the recent decade, Raman spectroscopy has played a key role in photonics as a powerful method suited for detection, diagnosis and screening applications across various industrial fields. In this work, we propose a home built Raman Spectroscopy optical system optimized for polymer detection and characterization. Once fully calibrated, the intended use for the system is to analyse various macromolecules especially biomolecules in assessment of cell based diseases. This system makes use of a 527 nm excitation laser beam of 5 μs pulse duration AT 1 kHz repetition rate and an average power of 10 mW. An Andor CCD camera attached to a grated spectrometer was used for Raman spectrum acquisition and data processing was performed using the Origin software. Polystyrene microspheres (20 μm) were diluted to various concentrations and analysed using the Raman system. The results obtained reveal that all the spectra excluding the control contained Raman peaks consistent with the documented molecular vibrations of polystyrene. Furthermore, the peak intensities and peak areas showed a direct relationship with the polymer concentration in solution. Future work will include testing polymer spheres of different sizes in order to assess the spectral differentiation capabilities of the system. Much of this work will lead to the design of Raman Spectroscopy system to be used as a diagnostic tool for point-of-care detection research.
Nonessential amino acids (NEAAs) are the building blocks for producing proteins of various functionalities within living systems. For example, from NEAAs, humans produce proteins that are important for cell repair, cell division and synthesis of hormones paramount to maintaining a healthy body. Understanding the chemical properties of NEAAs can therefore allow a thorough investigation of biological processes in the cases of ailing individuals. Raman spectroscopy has become a powerful technique for characterizing various organic compounds such as NEAAs, relying on their unique light scattering properties. In this study we present a custom built Raman Spectroscopy system which was used to investigate and calibrate a group of NEAAs through a comparison of peak area versus concentration. The results show that various regions of interest within the sample mixtures exhibit an increase in signal intensity when the concentration is increased. This is in agreement with current literature on the parameters that effect Raman systems such as concentration. Secondly, it was observed that 0.1 mM of NEAAs was the current detection limit of the system in terms of number of significant peaks produced. As a result, it is important that future work includes incorporating nanomaterials as sample scaffolds for signal enhancement to improve sensitivity. Much of this work is intended towards producing a point-of-care diagnostic tool for analysis of cancer agents.
In tissue engineering research, stem cells have been used as starting material in the synthesis of mammalian cells for the treatment of various cell based diseases. This is done by manipulating the DNA content of the cells to induce a specific effect such as increased proliferation or developing a new cell type through the process of differentiation. Such controlled gene expression of stem cells is achieved by the method of transfection, where exogenous plasmid deoxyribonucleic acid (pDNA) is inserted into a stem cell using chemical, viral or physical methods. In this research, we used femtosecond (fs) laser pulses from a home-build microscope system to perforate the cellular membrane and allow entry of selected pDNA to alter the behaviour of mouse embryonic stem cells (mESCs). In one set of experiments, we induce fluorescence on mESCs using green fluorescence protein plasmid (pGFP) while in other tests; differentiation of mESCs into endoderm cells is performed using Sox-17 plasmid DNA (pSox-17). Primitive endoderm formation was thereafter confirmed using polymerase chain reactions (PCR) and the Sox-17 primer. Cell viability studies using adenosine triphosphate were also conducted. From the data, it was concluded that the photo-transfection method is biocompatible since it was able to induce fluorescence in mESCs. Secondly, it was confirmed that Sox-17 was photo-transfected successfully using 6 μW laser power, 128 fs pulses and 1kHz pulse repetition rate.
Optical trapping has emerged as an essential tool for manipulating single biological material and performing sophisticated spectroscopy analysis on individual cell. The optical trapping technique has been used to grab and immobilize cells from a tightly focused laser beam emitted through a high numerical aperture objective lens. Coupling optical trapping with other technologies is possible and allows stable sample trapping, while also facilitating molecular, chemical and spectroscopic analysis. For this reason, we are exploring laser trapping combined with laser spectroscopy as a potential non-invasive method of interrogating individual cells with a high degree of specificity in terms of information generated. Thus, for the delivery of as much pathological information as possible, we use a home-build optical trapping and spectroscopy system for real time probing human immunodeficiency virus (HIV-1) infected and uninfected single cells. Briefly, our experimental rig comprises an infrared continuous wave laser at 1064 nm with power output of 1.5 W, a 100X high numerical aperture oil-immersion microscope objective used to capture and immobilise individual cell samples as well as an excitation source. Spectroscopy spectral patterns obtained by the 1064 nm laser beam excitation provide information on HIV-1 infected and uninfected cells. We present these preliminary findings which may be valuable for the development of an HIV-1 point of care detection system.
Embryonic stem cells have great promise in regenerative medicine because of their ability to self-renew and differentiate into various cell types. Delivery of therapeutic genes into cells has already been achieved using of chemical agents and viral vectors with high transfection efficiencies. However, these methods have also been documented as toxic and in the latter case they can cause latent cell infections. In this study we use femtosecond laser pulses to optically deliver genetic material in mouse embryonic stem cells. Femtosecond laser pulses in contrast to the conventional approach, minimises the risk of unwanted side effects because photons are used to create transient pores on the membrane which allow free entry of molecules with no need for delivery agents. Using an Olympus microscope, fluorescence imaging of the samples post irradiation was performed and decreased expression of stage specific embryonic antigen one (SSEA-1) consistent with on-going cellular differentiation was observed. Our results also show that femtosecond laser pulses were effective in delivering SOX 17 plasmid DNA (pSOX17) which resulted in the differentiation of mouse embryonic stem cells into endoderm cells. We thus concluded that laser transfection of stem cells for the purpose of differentiation, holds potential for applications in tissue engineering as a method of generating new cell lines.
Cellular manipulation by delivery of molecules into cells has been applied extensively in tissue engineering research for medical applications . The different molecular delivery techniques used range from viral and chemical agents to physical and electrical methods. Although successful in most studies, these techniques have inherent difficulties such as toxicity, unwanted genetic mutations and low reproducibility respectively. Literature recognizes pulsed lasers at femtosecond level to be most efficient in photonic interactions with biological material. As of late, laser pulses have been used for drug and DNA delivery into cells via transient optical perforation of the cellular membrane. Thus in this study, we design and construct an optical system coupled to a femtosecond laser for the purpose of phototransfection or insertion of plasmid DNA (pDNA) into cells using lasers. We used fluorescent green protein (pGFP) to transfect mouse embryonic stem cells as our model. Secondly, we applied fluorescence imaging to view the extent of DNA delivery using this method. We also assessed the biocompatibility of our system by performing molecular assays of the cells post irradiation using adenosine triphosphate (ATP) and lactate dehydrogenase (LDH).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.