A photonic RF self-interference cancellation (SIC) scheme for full-duplex communication is proposed and demonstrated experimentally. It is based on phase modulation to convert the RF signal into optical domain. The interference cancellation performance of the photonic RF SIC system under different delay deviation (Δτ) and amplitude deviation (Δα) is analyzed. The cancellation depth of 34.5 dB is measured for 10 GHz signal with bandwidth of 50MHz. According to experimental results, the interference cancellation performance affected by the time delay deviation, the amplitude deviation and the phase response is investigated. The results give a direction for the improvement of system performance.
Photonic enabled RF self-interference cancellation for full-duplex communication by using phase modulation and optical sideband filtering is proposed. Based on the inherent out-of-phase property between the left and right sidebands of phasemodulated signal and optical sideband filtering, the RF self-interference cancellation is achieved by tuning the delay time and amplitude in the optical domain. The operational principle of the proposed scheme is theoretically analyzed and the feasibility is experimentally demonstrated. The optical sideband filtering for the phase modulated signals is measured and the RF self-interference cancellation at different carrier frequencies is studied. The results show a good performance of the proposed photonic scheme for RF self-interference cancellation. The full-duplex communication based on the photonic enabled RF self-interference cancellation is also investigated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.