Our work is focused on the development of an efficient class of scalable, low cost and integrated elements for light polarization control in the mid-infrared. We investigated vanadium dioxide (VO2) a thermocromic material showing a semiconductor to metal transition at 67°C as well as alpha-molybdenum trioxide, a Van der Waals material displaying strongly anisotropic behavior in the infrared. We will show the single materials spectral response in the IR range and then we will highlight how the use of combined multilayer structures can allow the tunability of spectral features of the resulting structure to get IR radiation management.
We demonstrate super absorbing metal-insulator-metal (MIM) stacks and MIMIM photosensitive devices operating at visible and near-infrared (VIS-NIR) spectrum, where absorbing (top) MIM and photocollecting (bottom) MIM can be optimized separately. We investigate different bottom metals in absorbing MIM with nanoparticles realized by dewetting of silver thin film on top. While gold and silver have conventionally been considered the most appropriate plasmonic absorbers, we demonstrate different absorbing metals like aluminum and specifically chromium, with its plasma frequency happening at 850 nm, as more efficient layers for absorption. Absorption in chromium hits 82 percent around 1000 nm. We provide convincing evidences by doing reflection experiment and computational simulations for absorbing MIM part. We also suggest for the first time investigating electric loss tangent of metal or coherently, surface plasmon quality factor of absorbing metals which are reliable tools for engineering different metal layers. They reveal that despite the fact that gold and silver are good plasmonic scatterers in VIS-NIR and reliable absorbers in VIS region, they are not proper choices as absorbers for NIR applications. Once the most optimum absorbing design is pointed out, we integrate it on top of another metal-insulator to form an MIMIM photodetector with tunneling photocurrent path. The final optimized sample consisting of silver – hafnium oxide – chromium – aluminum oxide – silver nanoparticles (from bottom to top) has a dark current of 7nA and a photoresponsivity peak of 0.962 mA/W at 1000 nm and a full width at half maximum of 300 nm, while applied bias is 50 mV and device areas are 300 μm x 600 μm. This photoresponse shows 70 times enhancement compared to former reported spin coated rare nanoparticle MIMIMs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.