Microscopy image analysis can provide substantial information for clinical study and understanding of biological structures. Two-photon microscopy is a type of fluorescence microscopy that can image deep into tissue with near-infrared excitation light. We are interested in methods that can detect and characterize nuclei in 3D fluorescence microscopy image volumes. In general, several challenges exist for counting nuclei in 3D image volumes. These include “crowding” and touching of nuclei, overlapping of nuclei, and shape and size variances of the nuclei. In this paper, a 3D nuclei counter using two different generative adversarial networks (GAN) is proposed and evaluated. Synthetic data that resembles real microscopy image is generated with a GAN and used to train another 3D GAN that counts the number of nuclei. Our approach is evaluated with respect to the number of groundtruth nuclei and compared with common ways of counting used in the biological research. Fluorescence microscopy 3D image volumes of rat kidneys are used to test our 3D nuclei counter. The accuracy results of proposed nuclei counter are compared with the ImageJ’s 3D object counter (JACoP) and the 3D watershed. Both the counting accuracy and the object-based evaluation show that the proposed technique is successful for counting nuclei in 3D.
Segmentation is a fundamental step in quantifying characteristics, such as volume, shape, and orientation of cells and/or tissue. However, quantification of these characteristics still poses a challenge due to the unique properties of microscopy volumes. This paper proposes a 2D segmentation method that utilizes a combination of adaptive and global thresholding, potentials, z direction refinement, branch pruning, end point matching, and boundary fitting methods to delineate tubular objects in microscopy volumes. Experimental results demonstrate that the proposed method achieves better performance than an active contours based scheme.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.