Soft X-ray Imager (SXI) is a CCD camera onboard the ASTRO-H satellite which is scheduled to be launched
in 2014. The SXI camera contains four CCD chips, each with an imaging area of 31mm×
31 mm, arrayed in
mosaic, which cover the whole FOV area of 38' ×
38'. The SXI CCDs are a P-channel back-illuminated (BI) type
with a depletion layer thickness of 200 μm. High QE of 77% at 10 keV expected for this device is an advantage
to cover an overlapping energy band with the Hard X-ray Imager (HXI) onboard ASTRO-H. Verification with
engineering model of the SXI has been performed since 2011. Flight model design was fixed and its fabrication
has started in 2012.
We present the development of the data acquisition system for the X-ray CCD camera (SXI: Soft X-ray Imager)
onboard the ASTRO-H satellite. Two types of breadboard models (BBMs) of SXI electronics have been produced
to verify the functions of each circuit board and to establish the data acquisition system from CCD to SpaceWire
(SpW) I/F. Using BBM0, we verified the basic design of the CCD driver, function of the Δ∑-ADC, data
acquisition of the frame image, and stability of the SpW communication. We could demonstrate the energy
resolution of 164 eV (FWHM) at 5.9 keV. Using BBM1, we verified acquisition of the housekeeping information
and the frame images.
Soft X-ray Imager (SXI) is a CCD camera onboard the ASTRO-H satellite which is scheduled to be launched
in 2014. The SXI camera contains four CCD chips, each with an imaing aread of 31mmx31 mm, arrayed in
mosaic, which cover the whole FOV area of 38'x38'. The SXI CCD of which model name is HPK Pch-NeXT4
is a P-channel type, back-illuminated, fully depleted device with a thickness of 200μm. We have developed an
engineering model of the SXI camera body with coolers, and analog electronics for them. Combined with the
bread board digital electronics, we succeeded in operation the whole the SXI system. The CCDs are cooled down
to -120°C with this system, and X-rays from 55Fe sources are detected. Although optimization of the system is in
progress, the energy resolution of typical 200 eV and best 156 eV (FWHM) at 5.9 keV are obtained. The readout
noise is 10 e- to 15 e-, and to be improved its goal value of 5 e-. On-going function tests and environment tests
reveal some issues to be solved until the producntion of the SXI flight model in 2012.
The Soft X-ray Imager (SXI) is the X-ray CCD detector system on board the NeXT mission that is to be launched around 2013. The system consists of a camera, an SXI-specific data processing unit (SXI-E) and a CPU unit commonly used throughout the NeXT satellite. All the analog signal handling is restricted within the camera unit, and all the I/O of the unit are digital.
The camera unit and SXI-E are connected by multiple LVDS lines, and SXI-E and the CPU unit will be connected by a SpaceWire (SpW) network. The network can connect SXI-E to multiple CPU units (the formal SXI CPU and neighbors) and all the CPU units in the network have connections to multiple neighbors: with this configuration, the SXI system can work even in the case that one SpW connection or the formal SXI CPU is down.
The main tasks of SXI-E are to generate the CCD driving pattern, the acquisition of the image data stream and HK data supplied by the camera and transfer them to the CPU unit with the Remote Memory Access Protocol (RMAP) over SpW. In addition to them, SXI-E also detects the pixels whose values are higher than the event threshold and both adjacent pixels in the same line, and send their coordinates to the CPU unit. The CPU unit can reduce its load significantly with this information because it gets rid of the necessity to scan whole the image to detect X-ray events.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.