We report efficient second-harmonic emission by single multilayer metal–dielectric nanocavities. Engineering the intrinsic interface-induced symmetry breaking by resonant optical absorption design, allows to achieve almost two orders of magnitude higher second-harmonic generation efficiency compared to gold nanostructures with the same geometry. We estimate a second-order nonlinear susceptibility of the order of 1 pm/V, which is comparable to widely used nonlinear crystals. We envision that our system, which combines the advantages of both plasmonic and dielectric materials, might enable the realization of composite nano-systems for an efficient multi-purpose manipulation of nonlinear optical processes at the nanoscale.
We report on the fabrication and optical characterization of hyperbolic nanoparticles on a transparent substrate. These nanoparticles enable a separation of ohmic and radiative channels in the visible and near-infrared frequency ranges. The presented architecture opens the pathway towards novel routes to exploit the light to energy conversion channels beyond what is offered by current plasmon-based nanostructures, possibly enabling applications spanning from thermal emission manipulation, theragnostic nano-devices, optical trapping and nano-manipulation, non-linear optical properties, plasmonenhanced molecular spectroscopy, photovoltaics and solar-water treatments, as well as heat-assisted ultra-dense and ultrafast magnetic recording.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.