This work investigates a monolithic slotted Y-branch diode laser as a beating source to drive a continuous wave Terahertz spectrometer. Both arms of the Y-branch laser exhibit spectral selective feedback, which causes simultaneous emission at two frequencies. At first, a thorough optical characterisation with 5400 individual setpoints is performed to find the best point of operation. Two operational regimes with difference frequencies of 1 THz ± 10.5 GHz and 0.85 THz ± 6.5 GHz were identified. While validating the laser as a beating source to drive a cw-THz spectrometer, it was demonstrated that the device supports current-induced tuning of the emitted difference frequency. This technique allows frequency sweeps in the terahertz regime that can be used to measure the transmitted field without a mechanical delay stage. Finally, this technique is demonstrated to independently determine the thickness and refractive index of high resistive float zone silicon wafers of 2, 3.5, 4 and 8 mm thickness without a priori knowledge.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.