To analyze the terahertz (THz) wave generation by the mid-infrared (MIR) frequency nondegenerate parametric downconversion (NPDC) process in graphene nanoribbon arrays (GNAs) the nonlinear simulations using the perturbation method for solving the nonlinear diffraction problems were performed. First, we find the resonant frequencies of surface plasmon polaritons (SPP) modes in GNAs using the calculated multimode linear absorption spectra of incident waves with s-, p-polarization. Then we select the graphene ribbon sizes to satisfy the excitation condition of the SPP modes in the MIR frequency range. We choose the frequencies of pump and signal waves equal to resonant frequencies of the fundamental and high order SPP modes of GNA, respectively. It is shown that the efficiency of the THz wave generation via frequency NPDC of MIR to THz by nonlinear graphene arrays increases by several orders of magnitude when the frequency of signal and pump waves are close to the resonant SPP mode frequencies.
A multilayer two-dimensional periodic metasurface made of graphene micro-ribbons, which absorbs almost 100% of the energy incident on it at the resonance of the surface plasmon-polariton, has been theoretically investigated. To increase the bandwidth of the device, it is proposed to place 2-3 parallel graphene ribbons with close lengths in one elementary cell of the metasurface. It is shown that at resonance frequencies the generated power of the third harmonic increases by several orders of magnitude and can be increased in comparison with single-layer structures with an increase in the number of layers and packing density of graphene microribbon arrays and when using multilayer substrates.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.