We develop a quaternion wavelet transform (QWT) as a new multiscale analysis tool for geometric image features. The QWT is a near shift-invariant, tight frame representation whose coefficients sport a magnitude and three phase values, two of which are directly proportional to local image shifts. The QWT can be efficiently computed using a dual-tree filter bank and is based on a 2-D Hilbert transform. We demonstrate how the QWT's magnitude and phase can be
used to accurately analyze local geometric structure in images. We also develop a multiscale flow/motion estimation algorithm that computes a disparity flow map between two images with respect to local object motion.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.