The Corpus callosum (CC) is a massive white matter structure in the brain, and changes in its shape and volume are associated with subject characteristics, several diseases, and clinical conditions. The CC is mostly studied in magnetic resonance imaging (MRI), where it is segmented to extract valuable information. With the increasing availability of MRI data and the proliferation of automated algorithms to perform CC segmentation, quality control (QC) verification is mandatory to assure reliability in the entire analysis pipeline. We propose a convolutional neural network (CNN) for QC of CC segmentations. The CNN gets information on the mask and contextual information on the image and performs deep feature extraction using a pre-trained model. The CNN model was fine-tuned using T1-weighted MR images with CC masks, in the task of classifying correct or incorrect segmentations. The CNN-based approach got an area under the curve (AUC) of 97.98% on the test set. We used an additional test set of patients with tumor to test generalization capability of the trained model to other domains.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.