The microchannel-plate-based x-ray optics is a spherical crown containing millions of square microchannels, reflecting the small incident angle light at a certain angle through the inner wall of the channels. Structure defects may exist in the square microchannel array. In this paper, the effects of structure defects on the imaging performance were studied through simulation and MPO preparation experiment. The structure defects involved in the paper include two types, chamfered channels and tilting channels. The experimental results are consistent with the simulation images, proving that the simulations are correct. The results show that the imaging of MPO with standard square channels array is a symmetrical cross. The presence of chamfers in corner of the channels results in a weak secondary small cross in the 45° direction of the obvious cross. For the case that the channels are tilted slightly, the center of the cross deviates from the imaging center, and the cross becomes an asymmetric cross. This study provides a theoretical guidance for precise control of array structures in the preparation of MPO.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.