We experimentally demonstrated a Q-switched mode-locked (QML) and a continuous-wave mode-locked (CWML) ytterbium-doped fiber lasers with topological insulator: Bi2Se3 as saturable absorber (SA) in all normal dispersion regime. The Bi2Se3-SA is conventionally composited by embedding Bi2Se3 nanoplatelets into polyvinyl alcohol thin film, which provides a modulation depth of 7.6% and a saturation intensity of 38.9 MW/cm2. Based on this SA, with different cavity length, ytterbium-doped fiber laser can be operated at QML and CWML state, respectively. In the QML operation, a Q-switched envelope has the shortest pulse width of 1.12 μs and the tunable repetition rate from 96 to 175 kHz. The largest pulse envelope energy is 39.6 nJ, corresponding to average output power of 6.93 mW. In the CWML operation, an environmentally stable dissipative soliton laser pulse with pulse duration of ∼210 ps is obtained. The single pulse energy is 0.83 nJ with the repetition rate of 11.38 MHz at the wavelength of 1037 nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.