Improving the power and efficiency of 9xx-nm broad-area laser diodes reduces the cost of laser systems and expands applications. LDs with more than 25 W output power combined with power conversion efficiency (PCE) above 65% can provide a cost-effective high-power laser module. We report a high output power and high conversion efficiency laser diode operating at 915 nm by investigating the influence of the laser internal parameters on its output. The asymmetric epitaxial structure is optimized to achieve low optical loss while considering high internal efficiency, low series resistance, and modest optical confinement factor. Experimental results show an internal optical loss of 0.31 cm-1 and internal efficiency of 96%, in agreement with our simulation results. Laser diodes with 230 μm emitter width and 5 mm cavity length have T0 and T1 characteristic temperatures of 152 and 567 K, respectively. The maximum power conversion efficiency reaches 74.2% at 5 °C and 72.6% at 25 °C, and the maximum output power is 48.5 W at 48 A (at 30 °C), the highest reported for a 9xx-nm single emitter laser diode. At 25 °C, a high PCE of 67.5% is achieved for the operating power of 30 W at 27.5 A, and the lateral far-field angle with 95% power content is around 8°. Life test results show no failure in 1200 hours for 55 laser diodes. In addition, 55.5 W output was achieved at 55 A from a laser diode with 400 μm emitter width and 5.5 mm cavity length. A high PCE of 64.3% is obtained at 50 W with 47 A.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.