New high-frame-rate ultrasound imaging techniques are being developed to image tissue motion and blood flow with high sensitivity and at high temporal resolution. An emerging application for these new techniques is diagnosing inutero and neonatal cardiac disease. We have developed a morphologically and hemodynamically accurate neonatal heart phantom to provide a high-fidelity physical model for laboratory testing of ultrafast color Doppler echocardiography methods. This paper summarizes the design and functionality of the simulator by measuring pressure gradients across the mitral valve at a physiologic heart-rate range and stroke volume and by evaluating valve function using 2D transesophageal echocardiography (TEE) and Doppler images. The phantom achieved normal physiological pressures across the mitral valve ranging from 42 to 87 mmHg in systole and 2.4 to 4.2 mmHg in diastole at heartrates of 100, 125 and 150 beats per minute (bpm), with a realistic neonatal stroke volume of 7 ml. 2D ultrasound images were obtained at 60 bpm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.