CSTAR2 is a new telescope array which consists of two telescopes with 145mm-aperture and an equatorial mount, which was planned to update the CSTAR (Chinese Small Telescope Array) installed at Dome A, Antarctica in 2008. Since the previous camera was out of product, a brand new CCD camera with 1K*1K pixels was developed for CSTAR2, which was tested function well at -80℃ to prove the ability to work at Antarctica in a long period. The camera has a well performance and the readout noise is as low as 3.99e-rms. An equatorial mount made by NIAOT (Nanjing Institute of Astronomical Optics & Technology) can rotate the telescope to point almost entire sky area. In order to control CSTAR2 in an efficient way, a multi-level software control system was developed which contains three main layers: device control layer, coordinating operation layer, user interface layer. The whole system was planned to achieve automatic observation and remote operation under the conditions of poor satellite-link network.
The Antarctica Plateau with high altitude, low water vapor and low thermal emission from the atmosphere is known as one of the best sites on the earth for conducting astronomical observations from the near infrared to the sub-millimeter. Many optical astronomical telescopes are proposed by Chinese astronomical society at present, such as Kunlun Dark Universe Survey Telescope (KDUST), 6.5-meter optical telescopes and 12-meter optical and infrared telescopes. Accurate estimation of the sky background brightness of proposed sites provides the scientific basis for instruments design and observatory site selection. Based on this requirement, a near-infrared sky brightness monitor (NISBM) based on InGaAs photoelectric diode is designed by using the method of chopper modulation and digital lock-in amplifier in the near infrared band of J, H, Ks. The adaptability of the monitor under extremely low temperature conditions in Antarctica is promoted by taking advantage of PID heating and fault detection system. Considering the weak signal of Ks band in Antarctica, a surface blackbody is equipped for real-time calibration. For the adverse circumstances to human, an EPICS and Web based Remote Control Software is implemented for unattended operation. The NISBM has been successfully installed in Dome A, Antarctica on January 2019.
A 1 k × 1 k CCD camera is designed, implemented, and tested for the CSTAR2 telescope in Antarctica, including its mechanics, CCD controller, and low-noise power system. In the design of mechanics and electronics, low-temperature environment is taken into full consideration. The camera has demonstrated mechanical and electrical stability. The system readout noise is as low as 3.99erms− when the CCD readout frequency is 100 kHz. Every part of the camera is fully tested in a cryogenic refrigerator (−86 ° C) and proved that the camera has the ability to work in Antarctica for a long term. Finally, the camera is installed on the CSTAR2 telescopes to take observations and the imaging function is well implemented.
KEYWORDS: Sensors, Observatories, Calibration, Black bodies, Near infrared, Indium gallium arsenide, Temperature metrology, Signal to noise ratio, Infrared radiation, Electronics
The Ngari (Ali) observatory is located in Ngari, Tibet, a region known as “the roof of the roof of the world.” The observatory benefits from abundant photometric nights, low perceptible water vapor, high transmittance, and good seeing. Due to these advantages, it promises to be one of the best locations in the world at which to make infrared and submillimeter observations. However, no data on the sky background radiation at this location are available, impacting the planning of future facilities at the observatory. To remedy this deficiency, a near-infrared sky brightness monitor (NISBM) has been designed to obtain data in the J, H, and Ks bands. This monitor is based on an InGaAs photoelectric diode and uses chopper modulation and digital lock-in amplifier processing, which considerably enhance its signal-to-noise ratio, detectivity, and data acquisition speed. An independent device has been designed for each band (J, H, and Ks) and calibrated in the laboratory. The NISBM was installed at the Ngari observatory in July 2017 and has obtained the first NIR sky brightness data for that location.
KEYWORDS: Telescopes, Imaging systems, Control systems, Control systems design, Astronomy, Web services, Optical filters, Interfaces, Optical instrument design, Charge-coupled devices
The 1.2m Quantum Teleportation Telescope imaging system is a multi-band imaging system with dual channels called ‘red end’ and ‘blue end’. Each channel includes a CCD camera and a filter wheel system, and the blue end contains a focusing system. In order to improve the tracking accuracy, the guiding CCD is designed and deployed. The imaging system studies the mass of the black hole and the structure of AGN by observing the variation of AGN spectral line. In order to improve the observation efficiency, we design and implement a multi-level remote unattended observation and control system. The system adopts the framework of combining RTS2 and EPICS. EPICS is used to realize the individual control of each device. We defined status code and split device properties for debugging purpose or high-level invocating purpose. The EPICS Channel Access is integrated into the RTS2 software and a set of configurations in XML format is designed so that the RTS2 module can find the EPICS application. In the RTS2 layer, we developed a module for the coordinated control of the equipment. The module is responsible for sending instructions to the telescope and the guiding module according to the pre-defined list of observation plans, switching to the corresponding filter, and performing exposure operations. Finally, we developed web service and used web pages as user interface, which makes it convenient for users to control the telescope remotely and complete the observation task.
Tibet is known as the third pole of the earth. The Ngari (Ali) observatory in Tibet is a good site, and promising to be one of the best place for infrared and submillimeter observations in the world. However, there is no data available for sky background brightness in such place. In the near infrared band of J, H, Ks, a NIR sky brightness monitor (NISBM) is designed based on InGaAs photoelectric diode. By using the method of chopper modulation and digital lock-in amplifier processing, the SNR (Signal Noise Ratio), detectivity and the data acquisition speed of the device is greatly improved. The NISBM has been installed in Ngari observatory in July of 2017 and obtained the first data of NIR sky brightness at Ngari observatory.
Infrared sky background level is an important parameter of grounded infrared astronomy observations, which should be firstly measured in a good infrared observatory site, and only the site with low background level is suitable for infrared observations. Infrared sky background level can provide background data for the design of related infrared instruments. However, there is no such data available for major sites in China. Based on the requirement, In order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of optical system, mechanical structure and control system, detector and cooler, high gain readout electronic system, operational software. It is completed and carried out an experimental measurement in the laboratory. The result shows that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level.
The Astronomical Imaging System of a 1.2-meter-aperture Telescope is a multi-band imaging system with red and blue channels. The mass and structure of AGN central black hole are studied by observing the change of AGN spectral line. We designed an optical system with dual channels, changing the focal length ratio of telescope from f/8.429 to f/5 through the lens, and divide the optical path into red and blue channels through the beam splitter. The red waveband is 650nm1000nm and the blue waveband is 400nm-650nm. Each channel has a CCD camera. We set up focusing lens before the camera of blue channel to compensate the difference focusing length between red and blue channel after the red channel being focused by adjusting the telescope. For the realization of three groups of broadband photometry and twenty-four groups of narrowband photometry, an automatic filter wheel system is designed to switch the filter. At the same time, in order to reduce the influence of temperature drift of the filter, a constant temperature adjusting system for filter wheel box is carried out. In order to overcome the issue that the telescope itself does not have enough tracking accuracy, a guiding system for the imaging system is designed and implemented. Finally, we designed and implemented a multi-level software control system so that the users can remotely control the telescope.
A guiding system is designed, implemented and tested for our 1.2-meter Quantum-Teleportation Telescope Imaging System, due to the lack of accuracy of its own star tracking function. This paper at first introduces some key technologies of the system including star extraction, offset computation, star tracking, offset conversion and exception handling. The guiding system is implemented as a RTS2 device, and interacts with a guiding CCD and telescope. The workflow control of the guiding process is pushed forward by a finite-state machine. The system is tested in Delingha, Qinghai province. In cloudless condition, the guiding system can work for 15 min continuously, and long-exposure images produced by main CCDs can meet scientific requirements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.