The growth of multiparametric imaging protocols has paved the way for quantitative imaging phenotypes that predict treatment response and clinical outcome, reflect underlying cancer molecular characteristics and spatiotemporal heterogeneity, and can guide personalized treatment planning. This growth has underlined the need for efficient quantitative analytics to derive high-dimensional imaging signatures of diagnostic and predictive value in this emerging era of integrated precision diagnostics. This paper presents cancer imaging phenomics toolkit (CaPTk), a new and dynamically growing software platform for analysis of radiographic images of cancer, currently focusing on brain, breast, and lung cancer. CaPTk leverages the value of quantitative imaging analytics along with machine learning to derive phenotypic imaging signatures, based on two-level functionality. First, image analysis algorithms are used to extract comprehensive panels of diverse and complementary features, such as multiparametric intensity histogram distributions, texture, shape, kinetics, connectomics, and spatial patterns. At the second level, these quantitative imaging signatures are fed into multivariate machine learning models to produce diagnostic, prognostic, and predictive biomarkers. Results from clinical studies in three areas are shown: (i) computational neuro-oncology of brain gliomas for precision diagnostics, prediction of outcome, and treatment planning; (ii) prediction of treatment response for breast and lung cancer, and (iii) risk assessment for breast cancer.
A methodology to study the relationship between clinical variables [e.g., prostate specific antigen (PSA) or Gleason score] and cancer spatial distribution is described. Three-dimensional (3-D) models of 216 glands are reconstructed from digital images of whole mount histopathological slices. The models are deformed into one prostate model selected as an atlas using a combination of rigid, affine, and B-spline deformable registration techniques. Spatial cancer distribution is assessed by counting the number of tumor occurrences among all glands in a given position of the 3-D registered atlas. Finally, a difference between proportions is used to compare different spatial distributions. As a proof of concept, we compare spatial distributions from patients with PSA greater and less than 5 ng/ml and from patients older and younger than 60 years. Results suggest that prostate cancer has a significant difference in the right zone of the prostate between populations with PSA greater and less than 5 ng/ml. Age does not have any impact in the spatial distribution of the disease. The proposed methodology can help to comprehend prostate cancer by understanding its spatial distribution and how it changes according to clinical parameters. Finally, this methodology can be easily adapted to other organs and pathologies.
Imaging plays a central role in the evaluation of breast tumor response to neoadjuvant chemotherapy. Image-based assessment of tumor change via deformable registration is a powerful, quantitative method potentially to explore novel information of tumor heterogeneity, structure, function, and treatment response. In this study, we continued a previous pilot study to further validate the feasibility of an open source deformable registration algorithm DRAMMS developed within our group as a means to analyze spatio-temporal tumor changes for a set of 14 patients with DCE-MR imaging. Two experienced breast imaging radiologists marked landmarks according to their anatomical meaning on image sets acquired before and during chemotherapy. Yet, chemotherapy remarkably changed the anatomical structure of both tumor and normal breast tissue, leading to significant discrepancies between both raters for landmarks in certain areas. Therefore, we proposed a novel method to grade the manually denoted landmarks into different challenge levels based on the inter-rater agreement, where a high level indicates significant discrepancies and considerable amounts of anatomical structure changes, which would indeed impose giant problem for the following registration algorithm. It is interesting to observe that DRAMMS performed in a similar manner as the human raters: landmark errors increased as inter-rater differences rose. Among all selected six deformable registration algorithms, DRAMMS achieves the highest overall accuracy, which is around 5.5 mm, while the average difference between human raters is 3 mm. Moreover, DRAMMS performed consistently well within both tumor and normal tissue regions. Lastly, we comprehensively tuned the fundamental parameters of DRAMMS to better understand DRAMMS to guide similar works in the future. Overall, we further validated that DRAMMS is a powerful registration tool to accurately quantify tumor changes and potentially predict early tumor response to chemotherapy. Therefore, future studies that aim at examining if DRAMMS can generate valuable biomarkers for tumor response prediction during chemotherapy become feasible.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.