Organoid, an in vitro model to study cell behaviours in a living organism, holds great potential for human cellular biology study, especially in disease pathology, drug delivery and drug efficacy trials. However, it remains challenging to track subcellular features inside organoid, as organoid are clusters of high-density cells that highly scatters and absorbs both excitation and emission light. Here we report a strategy on nanoscopy that applying “non-diffractive” beam and near-infrared imaging probe to minimize the light scattering and absorption inside scattering bio-tissue. Using a single Bessel-doughnut beam excitation from a 980nm diode laser and detecting at 800nm, we achieved a near-infrared, “non-diffractive” nanoscopy with high resolution under-diffractive limit in water solution. We further demonstrate that this method can image single upconversion nanoparticles inside spheroids, as deep as half-100μm, with resolution of 113nm. This method provides simple solution to inspect inter-and intra-cellular trafficking and drug release of single nanoparticles in 3D biological systems.
Bright and photo-stable luminescent nanoparticles held great potential for bioimaging, long-term molecular tracking. Rare-earth-doped upconversion nanoparticles (UCNPs) have been recently discovered with unique properties for Stimulated Emission Depletion (STED) super-resolution microscopy imaging. However, this system strictly requires optical alignment of concentric excitation and depletion beams, resulting in cost, stability, and complicity of the system. Taking the advantage of intermediate state saturation in UCNPs, emission saturation nanoscopy has been developed as a simplified modality by using a single doughnut excitation beam. In this work, we report that the emission saturation curve of fluorescence probes can modulate the performance of multi-photon emission saturation nanoscopy. With the precise synthesis of UCNPs, we demonstrate the resolution of this new imaging approach can be improved with five parameters, including emission band, activator doping, excitation power, sensitizer doping, core-shell. This approach opens a new strategy to a simple solution for super-resolution imaging and single molecule tracking at low cost, suggesting a large scope for materials science community to improve the performance of emission saturation nanoscopy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.