Image super-resolution technology successfully overcomes the limitation of excessively large pixel size in infrared detectors and meets the increasing demand for high-resolution infrared image information. In this paper, the superresolution reconstruction of infrared images based on a convolutional neural network with a priori for high frequency information is reported. The main network structure is based on residual blocks, BN blocks that are not suitable for the super-resolution task are removed. The introduction of residual learning reduces computational complexity and accelerates network convergence. Multiple convolution layers and deconvolution layers respectively implement the extraction and restoration of the features in infrared images. images are divided into high frequency and low frequency parts. The low frequency part is the image of down-sampling, while the high frequency information is obeyed a simple case-agnostic distribution, which is equivalent to having a prior of high frequency information for the super-resolution network, Which is captures some knowledge on the lost information in the form of its distribution and embeds it into model’s parameters to mitigate the ill-posedness. Compared with the other previously proposed methods for infrared information restoration, our proposed method shows obvious advantages in the ability of high-resolution details acquisition.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.