KEYWORDS: Data modeling, Temperature metrology, Climate change, Climatology, Performance modeling, Analytical research, Agriculture, Error analysis, Time series analysis, Reflection
In this study, we focus on the temporal variation of temperature at the Fuyang station, aiming to reveal its long-term climate change trends and seasonal patterns. By collecting and analyzing temperature data from the Fuyang station over the past decades, this study utilizes time series analysis methods and the predictive effectiveness of the Prophet model to explore the periodicity, trend, and seasonal variation characteristics of temperature. Moreover, the research investigates the potential impact of climate change on temperature variations in the Fuyang area, including the influence of global warming on the long-term trend of regional temperatures. Through comparative analysis of temperature changes across different time scales, this paper aims to provide a scientific basis for the adaptation and strategy formulation of climate change in the Fuyang area. The results show that the annual average temperature at the Fuyang station has exhibited a rising trend year by year, especially with more significant temperature increases in winter, suggesting the impact of climate warming. Seasonal analysis reveals clear temperature periodicity, consistent with the specific climate characteristics of the region. The findings of this study are of great significance for understanding and predicting the climate change trends in the Fuyang area.
In order to study the optical properties of marine aerosols, the optical thickness, wavelength index, spectral distribution, refractive index, single scattering albedo and elevation of aerosol particles were measured by means of solar radiometer, micro pulse lidar and automatic weather station in Qingdao, South China Sea, East China Sea and South China Sea from July to November 2019. The results show that the aerosol optical thickness measured by the shipborne data is smaller than that measured by Qingdao and islands, and the aerosol elevation range is about 0.4-0.7, The diurnal variation is relatively stable, and the distribution of aerosol colloidal product spectrum in the offshore and the open sea has the same change trend. The radius of the coarse mode is about 2.4 μm-3.6 μ M. compared with other data, the real part of the refractive index is larger, the imaginary part is smaller, and the difference in the long wave band is more obvious. The single scattering albedo basically does not change with the wavelength.
As a hot research direction in the field of communication reconnaissance, signal modulation classification plays an increasingly important role in the field of national defense. Traditional signal modulation style classification methods are mostly based on the combination of feature engineering and pattern recognition. First, the expert features are extracted by manual design, and then the signal modulation is recognized by the pattern recognition algorithm. The limitation of this method is that an expert feature can only effectively identify a few specific modulation signals. Besides, the deficiency of the number of expert features will lead to a low classification accuracy. In order to improve the accuracy of signal modulation classification, a signal modulation classification algorithm based on convolutional neural network is proposed. Convolutional neural networks can achieve end-to-end classification without manually designing and extracting features. Convolutional neural networks can automatically extract various levels of abundant features through learning, which can improve classification accuracy. The convolutional neural network architecture designed in this paper includes: three convolutional layers, three pooling layers, and the last layer is the softmax classification layer, which outputs the classification results. Experimental results show that on a data set containing 32 I/O signals, when the signal-to-noise ratio is 6dB, the algorithm has a training accuracy rate of 92.7% and a test accuracy rate of 90.2%.
Selecting the solar radiometer and ground-based laser-radar data of several typical regions, we could invert the laser-radar ratio of each region by using the entire aerosol optical thickness measured by the solar radiometer as a constraint, and we conducted vertical aerosol distribution observation research based on this. The average laser-radar ratio in the four regions of Delingha Qingha(i spring), Hefei Anhu(i summer), Zhangye Gansu (summer), and Maoming Guangdong(winter)are 38, 62, 47, and 17 respectively. Comparing with selecting fixed LR,the extinction tends to change with the height approximately similarly,but the values of the extinction at different heights are different evenly.The vertical distribution of aerosols in different spatial and temporal distribution characteristics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.