Computed tomography (CT) is a widely used medical imaging modality which is capable of displaying the fine details of human body. In clinics, the CT images need to highlight different desired details or structures with different filter kernels and different display windows. To achieve this goal, in this work, we proposed a deep learning based ”All-in-One” (DAIO) combined visualization strategy for high-performance disease screening in the disease screening task. Specifically, the presented DAIO method takes into consideration of both kernel conversion and display window mapping in the deep learning network. First, the sharp kernel, smooth kernel reconstructed images and lung mask are collected for network training. Then, the structure is adaptively transferred to the kernel style through local kernel conversion to make the image have higher diagnostic value. Finally, the dynamic range of the image is compressed to a limited gray level by the mapping operator based on the traditional window settings. Moreover, to promote the structure details enhancement, we introduce a weighted mean filtering loss function. In the experiment, nine of the ten full dose patients cases from the Mayo clinic dataset are utilized to train the presented DAIO method, and one patient case from the Mayo clinic dataset are used for test. Results shows that the proposed DAIO method can merge multiple kernels and multiple window settings into a single one for the disease screening.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.