Cross-domain text classification has broad application prospects in the field of data mining. Since transfer learning can help target domain data to achieve the sharing and transfer of semantic information with the help of existing knowledge domains, transfer learning are generally used to achieve cross-domain text processing. Based on this, we propose a cross-domain text classification algorithm -MTrA. The algorithm is based on TrAdaBoost, taking into account the distribution differences between the source domain and the target domain. It uses the Maximum Mean Discrepancy(MMD) as the initial weight parameter of the two domain. MTrA adds a weight backfill factor that considers the accuracy of the source domain classification and balances the weight update method of the source domain data. Through the verification in the dataset 20 Newsgroups, Compared with the traditional TrAdaBoost algorithm, it improves the classification accuracy by 9.4% on average. it proves the effectiveness and advantages of the algorithm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.