The quantum dot light-emitting devices (QLEDs) have emerged as a promising candidate for electroluminescent devices due to their excellent optical properties, high efficiency, and tunable bandgaps. The QLEDs with increased and prolonged brightness have potential applications in lighting and display devices. However, the stability of these devices is still a matter of concern, and some factors that affect the luminescence from the device involve electric field and temperature-dependent conduction mechanism. Thermal degradation, quenching within the quantum dots, the design of charge transport layers and the charge balance between them are also some factors that affect the efficacy of these devices. The high working temperature of QLEDs is among the most challenging degradation mechanisms, thus an analysis has been carried out regarding the working temperature within the QLEDs, and the methods to minimize these effects have been studied. Another challenge is achieving charge balance within the device and different device structures have been analyzed to achieve the best results regarding charge balance within the device. A few potential strategies have been suggested to reduce the constraints faced in these electroluminescent devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.