InAs quantum dot (QD) laser heterostructures are grown by molecular beam epitaxy (MBE) system on GaAs substrates and fabricated. The InAs QD lasers exhibit comparable properties of the state-of-the-art QD lasers with the threshold current density Jth and efficiency ηi of 475A/cm2 and 72.6%, respectively, at room temperature. The quantum dot laser emission is butt-joint coupled into silicon photonics waveguides by aligning the laser and silicon photonics chips with two translation stages. Due to the optical feedback to the laser cavity at the air/Si interface, the laser power self-pulsation and reduced threshold current density are observed. And the effective facet reflectivity, Reff, of 62.7% is obtained from the theoretically analysis of the laser characteristics. Furthermore, the silicon photonics waveguides interface is coated with the SiO2/TiO2 antireflection (AR) coating layers, and no laser performance interference is observed owing the reduced optical feedback.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.