In this paper, we proposed a method based on the Freeman chain code to segment and count rhesus choroid-retinal vascular endothelial cells (RF/6A) automatically for fluorescence microscopy images. The proposed method consists of four main steps. First, a threshold filter and morphological transform were applied to reduce the noise. Second, the boundary information was used to generate the Freeman chain codes. Third, the concave points were found based on the relationship between the difference of the chain code and the curvature. Finally, cells segmentation and counting were completed based on the characteristics of the number of the concave points, the area and shape of the cells. The proposed method was tested on 100 fluorescence microscopic cell images, and the average true positive rate (TPR) is 98.13% and the average false positive rate (FPR) is 4.47%, respectively. The preliminary results showed the feasibility and efficiency of the proposed method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.