The traditional Shack-Hartmann wavefront sensor requires that the focal spot of each microlens must remain in its corresponding sub-aperture range to avoid mistakes in spot-subaperture matching. We present a software-based recognition algorithm that can obtain a much larger dynamic range while maintaining high precision: Iterative extrapolation method. In order to find the corresponding spots of all the subapertures, the method first select a 3x3 spot-array and establishes a polynomial function about the spot position to predict and find the adjacent spots, and then carry on this procedure in successive steps of the iterative algorithm. The performance of the iterative extrapolation method to expand the dynamic range of various wavefront are studied and compared with the sorting method by simulation. Finally, experiments were carried out to further verify the performance of the method. Both simulation and experimental results show that this algorithm can effectively expand the dynamic range of SHWS and the deviation of reconstructed wavefront from ideal one is below 0.08λ(PV).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.