Paper
30 March 2005 Time-resolved laser scanning microscopy with FLIM and advanced FCS capability
Author Affiliations +
Abstract
We present the technical integration of state-of-the-art picosecond diode laser sources and data acquisition electronics in conventional laser scanning microscopes. This procedure offers users of laser scanning microscopes an easy upgrade path towards time-resolved measurements. Our setup uses picosecond diode lasers from 375 to 800 nm for excitation which are coupled to the microscope via a single mode fiber. The corresponding emission is guided to a fibre coupled photon counting detector, such as Photomultiplier Tubes (PMT) or Single Photon Avalanche Diodes (SPAD). This combines the outstanding sensitivity of photon counting detectors with the ease of use of diode laser sources, to allow time-resolved measurements of fluorescence decays with resolutions down to picoseconds. The synchronization signals from the laser scanning microscope are fed into the data stream recorded by the TimeHarp 200 TCSPC system, via the unique Time-Tagged Time-Resolved (TTTR) data acquisition mode. In this TTTR data acquisition mode each photon is recorded individually with its specific parameters as detector channel, picosecond timing, global arrival time and, in this special application, up to three additional markers. These markers, in combination with the global arrival time, allow the system software to reconstruct the complete image and subsequently create the full fluorescence lifetime image (FLIM). The multi-parameter data acquisition scheme of the TimeHarp 200 electronics not only records each parameter individually, but offers in addition the opportunity to analyse the parameter dependencies in a multitude of different ways. This method allows for example to calculate the fluorescence fluctuation correlation function (FCS) on any single spot of interest but also to reconstruct the fluorescence decay of each image pixel and detector channel for advanced Forster Resonance Energy Transfer (FRET) analysis. In this paper, we present some selected results acquired with standard laser scanning microscopes upgraded towards temporal resolution.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Benedict Kraemer, Felix Koberling, Uwe Ortmann, Michael Wahl, Peter Kapusta, Andreas Buelter, and Rainer Erdmann "Time-resolved laser scanning microscopy with FLIM and advanced FCS capability", Proc. SPIE 5700, Multiphoton Microscopy in the Biomedical Sciences V, (30 March 2005); https://doi.org/10.1117/12.590500
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Laser scanners

Data acquisition

Microscopes

Fluorescence correlation spectroscopy

Fluorescence lifetime imaging

Luminescence

Picosecond phenomena

Back to Top