KEYWORDS: Stars, Exoplanets, Telescopes, Signal to noise ratio, Sun, Space operations, Planets, Optimization (mathematics), Large telescopes, Detection and tracking algorithms
We present optimized observation schedules for a distributed configuration of the Remote Occulter Mission. Accounting for refueling rounds, we show that an Earth-orbiting Remote Occulter could enable up to 158 ground-based observations of 80 exoplanetary targets in a mission lifetime. We develop two target lists, provide exposure time estimates for each potential target star, present an analytic approach for determining target observability, and estimate the cost of station-keeping and retargeting maneuvers required to maintain such a mission. We optimize the mission observation schedule over these cost and science delivery estimates using deterministic and metaheuristic optimization methods with varying degrees of operator intervention and conclude by assessing mission profile sensitivity to both isolated and accumulated cost and design perturbations.
KEYWORDS: Telescopes, Space telescopes, Space operations, Manufacturing, Exoplanets, Stars, Apodization, Data modeling, Planets, Electroluminescent displays
Distributed occulter/telescope systems hold great promise in the field of direct exoplanet imaging. However, proposed missions using this concept such as the New Worlds Observer or Exo-S (NASA) are exceptionally large with occulter diameters of tens of meters and inter-spacecraft separations of tens of megameters, requiring deployment in deep space. The estimated costs associated with these missions are in the billions of dollars. In order to reduce the risk associated with these missions, it is desirable to first deploy a low-cost technology demonstrator mission to prove that the distributed occulter telescope concept is valid. To that end, this work assesses the feasibility of miniaturizing the optics of the distributed occulter/telescope to enable deployment on micro- or nano-satellites in earth orbit. A variant of the convex optimization formulation introduced by previous authors is used to generate a pareto-optimal characterization between the achievable occulter contrast and a set of critical design variables (occulter radius, inner working angle, science spectrum, etc). This characterization is performed for two different sets of engineering constraints, corresponding to different levels of design complexity. The results of this study are compared to the performance requirements for imaging targets of scientific interest, namely exozodiacal dust disks, in order to identify promising design envelopes. The result of this work is a comprehensive trade of the capabilities of miniaturized, binary, petal-shaped occulters. This research demonstrates that there exist miniaturized occulter geometries compatible with micro- or nano-satellites in earth orbit suitable for imaging exozodiacal dust disks. In addition, this study provides a valuable methodology and performance guidelines for future distributed occulter/telescope designs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.