We present a revision to the astrometric calibration of the Gemini Planet Imager (GPI), an instrument designed to achieve the high contrast at small angular separations necessary to image substellar and planetary-mass companions around nearby, young stars. We identified several issues with the GPI data reduction pipeline (DRP) that significantly affected the determination of the angle of north in reduced GPI images. As well as introducing a small error in position angle measurements for targets observed at small zenith distances, this error led to a significant error in the previous astrometric calibration that has affected all subsequent astrometric measurements. We present a detailed description of these issues and how they were corrected. We reduced GPI observations of calibration binaries taken periodically since the instrument was commissioned in 2014 using an updated version of the DRP. These measurements were compared to observations obtained with the NIRC2 instrument on Keck II, an instrument with an excellent astrometric calibration, allowing us to derive an updated plate scale and north offset angle for GPI. This revised astrometric calibration should be used to calibrate all measurements obtained with GPI for the purposes of precision astrometry.
Ground-based direct imaging surveys such as the Gemini Planet Imager Exoplanet Survey (GPIES) rely on adaptive optics (AO) systems to image and characterize exoplanets that are up to a million times fainter than their host stars. One factor that can reduce AO performance is turbulence induced by temperature differences in the instrument’s immediate surroundings (e.g., “dome seeing” or “mirror seeing”). In this analysis, we use science observations, AO telemetry, and environmental data from September 2014 to February 2017 of the GPIES campaign to quantify the effects of mirror seeing on the performance of the Gemini Planet Imager (GPI) instrument. We show that GPI performance is optimal when the primary mirror (M1) is in equilibrium with the outside air temperature. We then examine the characteristics of mirror seeing by calculating the power spectral densities (PSDs) of spatial and temporal Fourier modes. Inside the inertial range of the PSDs, we find that the spatial PSD amplitude increases when M1 is out of equilibrium and that the integrated turbulence may exhibit deviations from Kolmogorov atmospheric turbulence models and from the one-layer frozen flow model. We conclude with an assessment of the current temperature control and ventilation strategy at Gemini South.
An explanation for the origin of asymmetry along the preferential axis of the point spread function (PSF) of an AO system is developed. When phase errors from high-altitude turbulence scintillate due to Fresnel propagation, wavefront amplitude errors may be spatially offset from residual phase errors. These correlated errors appear as asymmetry in the image plane under the Fraunhofer condition. In an analytic model with an open-loop AO system, the strength of the asymmetry is calculated for a single mode of phase aberration, which generalizes to two dimensions under a Fourier decomposition of the complex illumination. Other parameters included are the spatial offset of the AO correction, which is the wind velocity in the frozen flow regime multiplied by the effective AO time delay and propagation distance or altitude of the turbulent layer. In this model, the asymmetry is strongest when the wind is slow and nearest to the coronagraphic mask when the turbulent layer is far away, such as when the telescope is pointing low toward the horizon. A great emphasis is made about the fact that the brighter asymmetric lobe of the PSF points in the opposite direction as the wind, which is consistent analytically with the clarification that the image plane electric field distribution is actually the inverse Fourier transform of the aperture plane. Validation of this understanding is made with observations taken from the Gemini Planet Imager, as well as being reproducible in end-to-end AO simulations.
The simulations are carried out in GalSim, an open-source software package for simulating images of astronomical objects and PSFs. Atmospheric simulations are run by generating large phase screens at varying altitude and evolving them over long time scales. We compare the turbulence strength and temporal behavior of atmospheres generated from simulations to those from reconstructed telemetry data from the Gemini Planet Imager (GPI). GPI captures a range of spatial frequencies by sampling the atmosphere with 18-cm subapertures.
The LSST weak lensing analysis will measure correlations of galaxy ellipticity, requiring very accurate knowledge of the magnitude and correlations of PSF shape parameters. Following from the first analysis, we use simulations and sequential short exposure observations from the Differential Speckle Survey Instrument (DSSI) to study the behavior of PSF parameters - e.g., ellipticity and size - as a function of exposure time. These studies could help inform discussions of possible variable exposure times for LSST visits for example, to provide more uniform depth of visits.
This paper provides a description of how the CGI requirements flow from the top of the overall WFIRST mission structure through the Level 2 requirements, where the focus here is on capturing the detailed context and rationales for the CGI Level 2 requirements. The WFIRST requirements flow starts with the top Program Level Requirements Appendix (PLRA), which contains both high-level mission objectives as well as the CGI-specific baseline technical and data requirements (BTR and BDR, respectively). Captured in the WFIRST Mission Requirements Document (MRD), the Level 2 CGI requirements flow from the PLRA objectives, BTRs, and BDRs. There are five CGI objectives in the WFIRST PLRA, which motivate the four baseline technical/data requirements. There are nine CGI level 2 (L2) requirements presented in this work, which have been developed and validated using predictions from increasingly refined observatory and instrument performance models.
We also present the process and collaborative tools used in the L2 requirements development and management, including the collection and organization of science inputs, an open-source approach to managing the requirements database, and automating documentation. The tools created for the CGI L2 requirements have the potential to improve the design and planning of other projects, streamlining requirement management and maintenance.
The WFIRST CGI passed its System Requirements Review (SRR) and System Design Review (SDR) in May 2018. The SRR examines the functional requirements and performance requirements defined for the system and the preliminary program or project plan and ensures that the requirements and the selected concept will satisfy the mission, and the SDR examines the proposed system architecture and design and the flow down to all functional elements of the system
View contact details