Additive Manufacturing (AM) to produce parts of optical systems is gaining popularity due to design flexibility and functional integration. However, one of the significant challenges in the field of AM for optical systems is the limited manufacturing accuracy compared to traditional manufacturing methods. This causes an increase in manufacturing and assembly errors, which affects the fit and function of the produced parts and therefore the performance of the optical system. This work aims to reduce the negative impact of manufacturing and assembly errors on optical performance, as exemplified in practice by additively manufacturing housings and lens mounts for a Raman spectroscopy system. For this, the simulated optical system of a Raman spectrometer is used to perform the optical tolerance analysis, such as identifying critical components and sensitivity analysis. The Manufacturability of additive manufacturing is then evaluated by measuring printed standard specimens. According to optical and mechanical tolerance analysis, design and manufacturing problems can be found. Then the structure is optimized using the design flexibility provided by additive manufacturing, and accumulated errors from assembly and manufacturing are reduced by minimizing the number of installed components. Measuring the intensity of the Raman signal revealed that the improved design reduced the accumulated errors in the mechanical structure. In addition, the signal-to-noise ratio is significantly enhanced by 265 % compared to the non-optimized design. Hence, this design optimization based on tolerance analysis is an effective methodology for enhancing the performance of additively manufactured optical systems from the perspective of AM technology development in optical domain.
Additive Manufacturing of glass opens up new possibilities for the design and integration of optical components. By varying the shape and size of optical elements, optical systems specifically adapted to various applications can be fabricated cost-effectively. The Laser Glass Deposition (LGD) process uses a CO2 laser with a wavelength of 10.6 μm to locally generate temperatures above 2000 °C in fused silica fibers. This enables the Additive Manufacturing and Rapid Prototyping of glass by melting and then layer-by-layer deposition of fibers. However, these high temperatures can result in very high residual stress in the material. The development of a coaxial LGD process aims for a more uniform heating of the glass fiber during the printing process in order to enable a direction-independent process and to reduce the residual stresses within the printed components. In this work, a novel concept for the coaxial LGD process and its successful experimental application is presented. Further, a numerical simulation model is developed to describe the temperature distribution in the glass fiber during the coaxial LGD process. Based on experimental results and on the numerical simulation, the potentials and challenges of the coaxial LGD process are discussed.
Due to their exibility, highly transparent silicone materials offer potentials for the development of adjustable optics. Previously realized mechanisms for changing the focal length of a solid silicone lens applied discrete points of force to mechanically deform the geometry. This article describes an approach to adjust the focal length of silicone lenses quickly and precisely. The chosen approach aims for a minimal number of moving components to provide reliability and reduced complexity. A contactless and stepless adjustment is realized by using electromagnetic control. To determine the functionality of the lens, the tunable range of the focal length will be investigated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.