Knowledge of the bulk optical constants n and k of solids or liquids allows researchers to accurately predict the absorption, reflection, and scattering properties of materials for different physical forms. Indeed, chemically complex materials such as minerals can have an almost limitless variety of morphologies, particle sizes, shapes, and compositions, and the optical properties of such species can be predicted if the optical constants are known. For species such as minerals, there can be additional challenges due to e.g. hydration or dehydration during the course of the optical constants measurement. Here, we describe the protocols to obtain the bulk optical constants n and k of uranium-bearing minerals and ores such as uraninite or autunite. If quality n and k data are at hand, the (infrared) reflectance spectra can be predicted for different particle sizes and morphologies and the modeling results for various scenarios can be derived.
Fixed-angle reflectance spectroscopy using a commercial Fourier transform infrared (FTIR) spectrometer was employed to derive the optical constants n and k of several uranium compounds. This technique relies upon measurement of the quantitative reflectance R(ν) spectra from a polished surface across a broad spectral range (in this case, the mid- and far-IR covering ca. 7500 to 50 cm-1 ) followed by application of the Kramers-Kronig transformation (KKT). Near-normal fixed-angle measurements as used in this technique require continuous reflectance spectra to as low a wavenumber value as possible. Here, we discuss some of the many challenges in measuring the far-IR and very far-IR (terahertz) spectra using an interferometric instrument, particularly those stemming from small sample sizes, typically just millimeters on a face for crystalline samples, as well as limitations due to optical components and diffraction. We apply this method to single-crystal UO2 and its mineralogical form uraninite, as well as other Ubearing minerals such as autunite [Ca(UO2)2(PO4)2·8-12H2O] and the dehydrated form of autunite, meta-autunite. In addition to the specular reflectance spectra, x-ray diffractometry was used as a confirmatory technique to analyze the surface composition of the species. Deriving the infrared optical constants for such U-bearing species (as well as other solids) will enable nondestructive detection under a variety of environmental and compositional conditions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.