We report results from a recent field experiment to test the validity of using physics-based synthetic infrared spectra to serve as endmembers in a spectral database targeted at chemical deposits. Specifically, the optical constants n and k, (the real and imaginary part of the refractive index) were used to first model infrared reflectance spectra for different thicknesses of chemical layers (e.g. acetaminophen, methylphosphonic acid – MPA, etc.) on various conducting and insulating substrates such as aluminum, wood, and glass. In the experimental portion of the research, thin films of the solid and liquid analytes were deposited onto such substrates to form micron-thick layers of the analytes at different thicknesses: Standoff data from an imaging instrument were then recorded and analyzed to not only identify the different analytes, but also quantify the layer/deposit thickness. To gauge success, the detection results using the synthetic data were compared to the results from laboratory hemispherical reflectance (HRF) spectra that were collected for the same sample planchets measured in the field via standoff methods. Preliminary results indicate good agreement between the synthetic reference data as compared to the lab-measured HRF data in terms of their ability to quantitatively reduce longwave infrared data. Specifically, modeled IR spectra for acetaminophen on an aluminum planchet at various thicknesses (1, 2, 5, 10, 15, and 20 μm) were synthesized and compared with standoff field reflectance data as well as HRF laboratory reflectance spectra for two samples: a 5.2 μm- and 12.8 μm-thick layer of acetaminophen on aluminum. Using a first-order approximation, analysis of the field data estimates the thicknesses of the samples to be 2 and 10 μm for the two samples, respectively, while the HRF laboratory data yields thickness estimates of between 5-10 μm and 10 μm, respectively. Both yield reasonable estimates, with the uncertainty most likely due to factors yet to be accounted for in the synthetic spectra such as light scattering.
Detection of analytes deposited on surfaces is crucial for many applications: Development of methods to prepare thin layers (e.g. ~5 to 100 μm) is important for both system design and field studies. In this work, solid and liquid analytes were deposited on painted and bare substrates including aluminum, glass, plastic, and concrete using an ExactaCoat ultrasonic spray coater. Laboratory hemispherical reflectance (HRF) spectra were collected for samples with different layer thicknesses so as to characterize both the composition and layer thickness. Preliminary results demonstrate that to prepare homogenous layers on surfaces, parameters such as substrate type, analyte solubility, vapor pressure, paint color, surface porosity, and surface roughness are all important. Liquid chemicals posed several issues during deposition: Diisopropyl methyl phosphonate evaporated from surfaces more quickly than the other chemicals and was thus not detected in the HRF experiments. Less volatile liquids, such as tributylphosphate, remained on the surface for the duration of the test, but a uniform layer thickness could not be obtained as the liquid pooled to one side when mounted at an angle. The deposition of solids (e.g., acetaminophen, caffeine and methylphosphonic acid) from volatile solvents such as chloroform also proved problematic due to streaking caused by rapid solvent evaporation. Solids deposited from ethanol, however, worked well on bare substrates. For most samples plotting the integrated infrared band strength vs. surface thicknesses showed a linear relationship, confirming that the surface loading can be controlled by programming the concentration and the number of passes on the ultrasonic sprayer.
The optical constants, namely the real (n) and imaginary (k) parts of the complex refractive index, are of interest to generate the infrared (IR) spectra of liquid and solid materials in different morphologies. To obtain n/k, however, most materials are typically not found in the monolithic forms necessary to easily measure n/k, and thus require the use of other methods such as pressing powders to form planar, specularly-reflective pellets. In this work dolomite crystals are measured using fixed-angle IR reflectance spectroscopy in both 1) a monolithic form with the crystal fixed in epoxy and polished, and 2) a pressed-pellet form of the powder of the same mineral. First results for the two methods are compared. It was found that the measured reflectance can vary by as much as a factor of two between the dolomite crystals and the pressed powder forms. For the two-sample preparation approaches the preliminary spectra are compared and the implications and limitations of each method for determining the optical constants of given materials are discussed. Comparison to literature data suggest that polarization effects likely account for the differing amplitude results for reflectance (and hence the k-vectors): Dolomite is biaxial with significantly differing optical constants for the ordinary and extraordinary rays; the pressed pellet method measures an ensemble of microcrystals in randomly oriented positions, whereas the single crystal maintains just one orientation relative to the optical axis.
Knowledge of the bulk optical constants n and k of solids or liquids allows researchers to accurately predict the absorption, reflection, and scattering properties of materials for different physical forms. Indeed, chemically complex materials such as minerals can have an almost limitless variety of morphologies, particle sizes, shapes, and compositions, and the optical properties of such species can be predicted if the optical constants are known. For species such as minerals, there can be additional challenges due to e.g. hydration or dehydration during the course of the optical constants measurement. Here, we describe the protocols to obtain the bulk optical constants n and k of uranium-bearing minerals and ores such as uraninite or autunite. If quality n and k data are at hand, the (infrared) reflectance spectra can be predicted for different particle sizes and morphologies and the modeling results for various scenarios can be derived.
Novel optical materials capable of advanced functionality in the infrared will enable optical designs that can offer lightweight or small footprint solutions in both planar and bulk optical systems. UCF’s Glass Processing and Characterization Laboratory (GPCL) with our collaborators have been evaluating compositional design and processing protocols for both bulk and film strategies employing multi-component chalcogenide glasses (ChGs). These materials can be processed with broad compositional flexibility that allows tailoring of their transmission window, physical and optical properties, which allows them to be engineered for compatibility with other homogeneous amorphous or crystalline optical components. This paper reviews progress in forming ChG-based GRIN materials from diverse processing methodologies, including solution-derived ChG layers, poled ChGs with gradient compositional and surface reactivity behavior, nanocomposite bulk ChGs and glass ceramics, and meta-lens structures realized through multiphoton lithography (MPL).
Advanced photonic devices require novel optical materials that serve specified optical function but also possess
attributes which can be tailored to accommodate specific optical design, manufacturing or component/device
integration constraints. Multi-component chalcogenide glass (ChG) materials have been developed which exhibit
broad spectral transparency with a range of physical properties that can be tuned to vary with composition, material
microstructure and form. Specific tradeoffs that highlight the impact of material morphology and optical properties
including transmission, loss and refractive index, are presented. This paper reports property evolution in a
representative 20 GeSe2-60 As2Se3-20 PbSe glass material including a demonstration of a 1D GRIN profile through
the use of controlled crystallization.
Seventeen infrared-transmitting GeAsSe chalcogenide glasses were fabricated to determine the role of chemistry and
structure on mid-wave infrared (MWIR) optical properties. The refractive index and thermoptic coefficients of
samples were measured at λ = 4.515 μm using an IR-modified Metricon prism coupler, located at University of
Central Florida. Thermo-optic coefficient (dn/dT) values were shown to range from approximately -40 ppm/°C to
+65 ppm/°C, and refractive index was shown to vary between approximately 2.5000 and 2.8000. Trends in
refractive index and dn/dT were found to be related to the atomic structures present within the glassy network, as
opposed to the atomic percentage of any individual constituent. A linear correlation was found between the quantity
(n-3•dn/dT) and the coefficient of thermal expansion (CTE) of the glass, suggesting the ability to compositionally
design chalcogenide glass compositions with zero dn/dT, regardless of refractive index or dispersion performance.
The tunability of these novel glasses offer increased thermal and mechanical stability as compared to the current
commercial zero dn/dT options such as AMTIR-5 from Amorphous Materials Inc. For IR imaging systems designed
to achieve passive athermalization, utilizing chalcogenide glasses with their tunable ranges of dn/dT (including zero)
can be key to addressing system size, weight, and power (SWaP) limitations.
The permanent refractive index change induced by ultrashort laser pulses in zinc phosphate glasses has been investigated both at the surface and in bulk. At the sample surface, irradiations have been performed by using loosely focused single fs-laser pulses at different energies. Optical microscopy images of the irradiations illustrate an interferometric pattern in form of concentric Newton rings due to the laser induced multilayer system (unmodified glass, thin laser-modified layer, air). This experimental reflectivity modulation along with simulations based on Abeles theory for multilayer optical systems allows retrieving laser-induced refractive index changes on the order of Δns= -10-3. In bulk, fs-laser written waveguides have been generated by translating the sample with respect to a tightly focused laser beam. The so-produced waveguides have been characterized by studying the optical near field of the TEM00 guided mode at 660 nm and using white light microscopy. The optical changes linked to the inscribed waveguides have been characterized by measuring the far field output profiles yielding values of approximately Δnb= +3·10-4. The laser-modified optical properties in bulk and at the surface will be linked to the glass structural changes as well as discussed in terms of the role of the incubation effects for multi-pulse processing.
Conventional photonic integration technologies are inevitably substrate-dependent, as different substrate platforms stipulate vastly different device fabrication methods and processing compatibility requirements. Here we capitalize on the unique monolithic integration capacity of composition-engineered non-silicate glass materials (amorphous chalcogenides and transition metal oxides) to enable multifunctional, multi-layer photonic integration on virtually any technically important substrate platforms. We show that high-index glass film deposition and device fabrication can be performed at low temperatures (< 250 °C) without compromising their low loss characteristics, and is thus fully compatible with monolithic integration on a broad range of substrates including semiconductors, plastics, textiles, and metals. Application of the technology is highlighted through three examples: demonstration of high-performance mid-IR photonic sensors on fluoride crystals, direct fabrication of photonic structures on graphene, and 3-D photonic integration on flexible plastic substrates.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.