In this Letter, the identification device disclosed in the present invention is comprised of: a carrier
and a plurality of pseudo-pixels; wherein each of the plural pseudo-pixels is formed on the carrier
and is further comprised of at least a light grating composed of a plurality of light grids. In a
preferred aspect, each of the plural light grids is formed on the carrier while spacing from each
other by an interval ranged between 50nm and 900nm. As the aforesaid identification device can
present specific colors and patterns while it is being viewed by naked eye with respect to a
specific viewing angle, the identification device is preferred for security and anti-counterfeit
applications since the specific colors and patterns will become invisible when it is viewed while
deviating from the specific viewing angle.
In this paper, the guide-mode resonance (GMR) devices based on a suspended membrane structure is designed and
experimentally demonstrated. The presented membrane structure possesses a simple structure for resonance excitation
and is capable of improving the spectral response. The results of resonance excitation, improving the sideband and low
oscillatory spectrum are presented. Due to the utilization of silicon-based materials, the proposed filter is also potential
candidates to be integrated with other optoelectronic devices for further applications.
In this paper, the design of effective microprism based on the subwavelength periodic lattices is proposed. The
microprism is realized by using a two-dimensional photonic crystal (PhC) structure with a periodic lattice of air-holes.
In order to behave as a homogeneous and isotropic microprism, the PhC structure with a hexagonal lattice should be
operated in the low frequency. By monolithically integrating the effective microprism in the bending area of an optical
waveguide, its wavefront of eigenmode could be tilted correctly to suppress the radiation loss in wide-angle bent
waveguides. In order to demonstrate the feasibility of proposed microprism for low-index-contrast waveguides, an
example of bent waveguide with the eigenmode nearly compatible to the single mode fiber is adopted to design the PhC
microprism. The transmission efficiency as high as 92% for the proposed structure with the bending angle of 12.96° and
the bending radius of 89.09 μm is achieved.
In this paper, silicon-based micro and subwavelength optical elements based on a free-standing silicon nitride (SiNx)
membrane are achieved. These elements, including gratings, microlenses, and holographic optical elements (HOEs), are
designed and used within the visible and infrared regions. These devices can be used as collimators, reflectors, and
wavelength-dependent filters with advantages of simple structure, high efficiency and feasibility to integrate with other
elements into a micro-system chip. In order to demonstrate the advantage of micro-optics of free-standing SiNx
membrane type in integration, a miniaturized optical pickup head module based on a stacked micro-optical system is
developed. This module consisted of a laser diode, a reflector, a grating, a holographic optical element, and some
aspherical Fresnel lenses. The novel microoptical system can overcome the problems encountered in other microoptical
systems such as off-axis aberration, lower optical efficiency or durability, integration and even in fabrication. A focal
spot with a FWHM diameter of 3.3 μm is obtained while the diffraction limited full-width at half-maximum (FWHM) is
0.7 μm. To extend the advantage of micro-optics of free-standing SiNx membrane, the subwavelength optical elements
base on guided-mode resonance is also developed. With various Si-based structures, the filter possesses numerous
properties such as variable bandwidths, low sideband, flattop, and etc. They are also applied as biosensors to detect the
hybridization process of bio reaction for their high sensitivity. The results show that micro and subwavelength optical
elements fabricated on Si-based material will be a candidate for emerging silicon micro-photonics.
The hydrogenated Silicon nitride film is well developed to form a passivation layer for non-volatile memory devices. It has many superior chemical, electrical, and mechanical properties. In addition, it also has excellent optical properties. It is transparent in UV and DUV range, with a high refractive index of about 1.7~2. Owing to its superior mechanical and optical properties, we used a hydrogenated silicon nitride (SiNXHY) membrane as an optical phase element. By using e-beam lithography, we demonstrate on feasibility for the fabrication of subwavelength optical elements, such as waveplate, polarizer, and polarized beam splitter on a silicon-based low stress SiNXHY membrane for the UV region applications. An SiNXHY film was deposited by plasma enhanced chemical vapor deposition (PECVD) and the free- standing membrane is formed by KOH silicon backside etching, from which substrate materials are removed. The membrane's morphology and geometries of subwavelength optical elements were verified by means of an scanning electron microscope (SEM), and the optical performance characteristics of these subwavelength optical elements are shown. The experimental datas agree well with theoretical predictions.
In this paper, fabrication an optical filter based on guided-mode resonance (GMR) effect in a silicon nitride (SiNx) membrane by silicon bulk micromachining technologies is demonstrated. Such a filter has advantages of simple structure, high efficiency and it is potential to be integrated with other developed optoelectronic elements into an integrated micro systems. The design consideration, fabrication procedures and measured spectral response are shown in this paper.
The optical transmission and distribution through a subwavelength slit on a tapered metallic substrate was investigated. By using a 45° tapered structure, 6 times larger transmission enhancement was achieved compared with a traditional metallic plate structure because of the asymmetric excited surface waves and the matching of propagation constants between the surface waves and slit waveguide. In addition, a focus beam was obtained by patterning surface corrugations in the exit plane. By tuning the period of the surface corrugations, we were able to adjust the focal length with a spot size smaller than the diffraction limit. The focal point can be kept about 0.6μm with a focal length from 0.5μm to 2.5μm for a grating period from 0.5μm to 0.6μm.
For the detection of molecular interaction, a novel approach of the guided-mode resonance (GMR) spectroscopy identifies molecules via specific bindings with their ligands immobilized on the grating surface is presented. The structure of GMR device generally consists of two stages -- upper grating layer and waveguide layer. When the wide-band light illuminating, the GMR device inhibits on a specific resonant narrow-band of wavelength, and allows for other wavelength to transmit. The specific resonant narrow-band of wavelength results in the diffraction of the incident wide-band wave and the selection in the waveguide layer. This is very useful in highly sensitive measurement, especially for the variations in the refractive index of bulk media, and for the monitoring of variations in the thickness of thin film. In the simulation, one Si3N4 (n=2) GMR device is designed. When the wavelength of the illumination ranges from 1520nm to 1620nm, the resonant peak wavelength will shift 0.03nm as per
1nm bio-layer (nbio 1.3) has been attached on. Finally, on the basis of the theoretical analysis, the optimization of a spectral GMR sensor in terms of the operation wavelength has been carried out.
Silicon nitride (SiNX) film is a commonly used material in silicon technology. In addition, it has excellent optical properties. It is transparent in both the UV and visible range, with a high refractive index of about 1.7~2. Owing to its superior mechanical and optical properties, we used a silicon nitride membrane as an optical phase element. We will fabricate nano-structured diffractive optical elements, such as wave-plate, polarizer, and polarized beam splitter on SiNXHY membrane by e-beam lithography for the UV-visible regime applications. The SiNXHY membranes were made from SiNXHY films deposited by an plasma enhanced chemical vapor deposition (PECVD) as an alternative method for low stress membrane fabrication used in UV-visible transmittance. The stress of silicon nitride film showed a change from compressive to tensile with increasing working pressure during film deposition. The UV-visible transmittance of the free standing membrane was measured, which showed that UV light is transparent at wavelength as short as 240nm. We will show the feasibility to fabricate nano-structured diffractive optical elements on the SiNXHY membrane combined with microoptoelectromechanical systems (MOEMS) technology for the application in the UV-visible regimes.
An out-of-plane guided-mode resonance (GMR) filter on a single Si chip using a two-layer polysilicon surface micromachining process was proposed. To the best of our knowledge, this is the first time that a monolithic optical filter has been integrated on a silicon microoptical bench. This device can be used as a bi-directional transceiver filter. The extinction ratio between 1550nm and 1310nm could be as low as 40dB and the channel passband at 1550nm was 20nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.